Loading…
NMF-Based Speech Enhancement Using Bases Update
This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template...
Saved in:
Published in: | IEEE signal processing letters 2015-04, Vol.22 (4), p.450-454 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453 |
container_end_page | 454 |
container_issue | 4 |
container_start_page | 450 |
container_title | IEEE signal processing letters |
container_volume | 22 |
creator | Kwon, Kisoo Shin, Jong Won Kim, Nam Soo |
description | This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments. |
doi_str_mv | 10.1109/LSP.2014.2362556 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6919287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6919287</ieee_id><sourcerecordid>1629356399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNwR-LSI5dudtIk9REmBkjjQxo7R1nqsqKtK0134N_TaRNXTrbl57WsR4hrhBEi0Hg2fx9JwGwklZFamxMxQK3ztB_xtO_BQkoE-bm4iPELAHLM9UCMX1-m6b2PXCTzhjmskod65evAG667ZBGr-jPZr2OyaArf8aU4K_068tWxDsVi-vAxeUpnb4_Pk7tZGpSkLvW0NKyZTPBQakRWdlmUspTEGds8I2U0acwQSyv7_1EDBzSBCy8tZ1oNxe3hbtNuv3ccO7epYuD12te83UWHNsusBCvt_6iRpLRRRD0KBzS02xhbLl3TVhvf_jgEt9foeo1ur9EdNfaRm0OkYuY_3BCSzK36BQ0eawg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629356399</pqid></control><display><type>article</type><title>NMF-Based Speech Enhancement Using Bases Update</title><source>IEEE Xplore (Online service)</source><creator>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</creator><creatorcontrib>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</creatorcontrib><description>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2362556</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Factorization ; Gain ; Mathematical models ; Noise ; Non-negative matrix factorization ; on-line bases update ; On-line systems ; Signal processing ; Speech ; Speech enhancement ; Statistical analysis ; statistical model-based enhancement ; Training ; Vectors</subject><ispartof>IEEE signal processing letters, 2015-04, Vol.22 (4), p.450-454</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</citedby><cites>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6919287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kwon, Kisoo</creatorcontrib><creatorcontrib>Shin, Jong Won</creatorcontrib><creatorcontrib>Kim, Nam Soo</creatorcontrib><title>NMF-Based Speech Enhancement Using Bases Update</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</description><subject>Computational modeling</subject><subject>Factorization</subject><subject>Gain</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Non-negative matrix factorization</subject><subject>on-line bases update</subject><subject>On-line systems</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Speech enhancement</subject><subject>Statistical analysis</subject><subject>statistical model-based enhancement</subject><subject>Training</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmNwR-LSI5dudtIk9REmBkjjQxo7R1nqsqKtK0134N_TaRNXTrbl57WsR4hrhBEi0Hg2fx9JwGwklZFamxMxQK3ztB_xtO_BQkoE-bm4iPELAHLM9UCMX1-m6b2PXCTzhjmskod65evAG667ZBGr-jPZr2OyaArf8aU4K_068tWxDsVi-vAxeUpnb4_Pk7tZGpSkLvW0NKyZTPBQakRWdlmUspTEGds8I2U0acwQSyv7_1EDBzSBCy8tZ1oNxe3hbtNuv3ccO7epYuD12te83UWHNsusBCvt_6iRpLRRRD0KBzS02xhbLl3TVhvf_jgEt9foeo1ur9EdNfaRm0OkYuY_3BCSzK36BQ0eawg</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Kwon, Kisoo</creator><creator>Shin, Jong Won</creator><creator>Kim, Nam Soo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>NMF-Based Speech Enhancement Using Bases Update</title><author>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Factorization</topic><topic>Gain</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Non-negative matrix factorization</topic><topic>on-line bases update</topic><topic>On-line systems</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Speech enhancement</topic><topic>Statistical analysis</topic><topic>statistical model-based enhancement</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Kisoo</creatorcontrib><creatorcontrib>Shin, Jong Won</creatorcontrib><creatorcontrib>Kim, Nam Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Kisoo</au><au>Shin, Jong Won</au><au>Kim, Nam Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMF-Based Speech Enhancement Using Bases Update</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-04</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><spage>450</spage><epage>454</epage><pages>450-454</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2014.2362556</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2015-04, Vol.22 (4), p.450-454 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_6919287 |
source | IEEE Xplore (Online service) |
subjects | Computational modeling Factorization Gain Mathematical models Noise Non-negative matrix factorization on-line bases update On-line systems Signal processing Speech Speech enhancement Statistical analysis statistical model-based enhancement Training Vectors |
title | NMF-Based Speech Enhancement Using Bases Update |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMF-Based%20Speech%20Enhancement%20Using%20Bases%20Update&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Kwon,%20Kisoo&rft.date=2015-04&rft.volume=22&rft.issue=4&rft.spage=450&rft.epage=454&rft.pages=450-454&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2362556&rft_dat=%3Cproquest_ieee_%3E1629356399%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1629356399&rft_id=info:pmid/&rft_ieee_id=6919287&rfr_iscdi=true |