Loading…

NMF-Based Speech Enhancement Using Bases Update

This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2015-04, Vol.22 (4), p.450-454
Main Authors: Kwon, Kisoo, Shin, Jong Won, Kim, Nam Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453
cites cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453
container_end_page 454
container_issue 4
container_start_page 450
container_title IEEE signal processing letters
container_volume 22
creator Kwon, Kisoo
Shin, Jong Won
Kim, Nam Soo
description This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.
doi_str_mv 10.1109/LSP.2014.2362556
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6919287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6919287</ieee_id><sourcerecordid>1629356399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNwR-LSI5dudtIk9REmBkjjQxo7R1nqsqKtK0134N_TaRNXTrbl57WsR4hrhBEi0Hg2fx9JwGwklZFamxMxQK3ztB_xtO_BQkoE-bm4iPELAHLM9UCMX1-m6b2PXCTzhjmskod65evAG667ZBGr-jPZr2OyaArf8aU4K_068tWxDsVi-vAxeUpnb4_Pk7tZGpSkLvW0NKyZTPBQakRWdlmUspTEGds8I2U0acwQSyv7_1EDBzSBCy8tZ1oNxe3hbtNuv3ccO7epYuD12te83UWHNsusBCvt_6iRpLRRRD0KBzS02xhbLl3TVhvf_jgEt9foeo1ur9EdNfaRm0OkYuY_3BCSzK36BQ0eawg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629356399</pqid></control><display><type>article</type><title>NMF-Based Speech Enhancement Using Bases Update</title><source>IEEE Xplore (Online service)</source><creator>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</creator><creatorcontrib>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</creatorcontrib><description>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2362556</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Factorization ; Gain ; Mathematical models ; Noise ; Non-negative matrix factorization ; on-line bases update ; On-line systems ; Signal processing ; Speech ; Speech enhancement ; Statistical analysis ; statistical model-based enhancement ; Training ; Vectors</subject><ispartof>IEEE signal processing letters, 2015-04, Vol.22 (4), p.450-454</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</citedby><cites>FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6919287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kwon, Kisoo</creatorcontrib><creatorcontrib>Shin, Jong Won</creatorcontrib><creatorcontrib>Kim, Nam Soo</creatorcontrib><title>NMF-Based Speech Enhancement Using Bases Update</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</description><subject>Computational modeling</subject><subject>Factorization</subject><subject>Gain</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Non-negative matrix factorization</subject><subject>on-line bases update</subject><subject>On-line systems</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Speech enhancement</subject><subject>Statistical analysis</subject><subject>statistical model-based enhancement</subject><subject>Training</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmNwR-LSI5dudtIk9REmBkjjQxo7R1nqsqKtK0134N_TaRNXTrbl57WsR4hrhBEi0Hg2fx9JwGwklZFamxMxQK3ztB_xtO_BQkoE-bm4iPELAHLM9UCMX1-m6b2PXCTzhjmskod65evAG667ZBGr-jPZr2OyaArf8aU4K_068tWxDsVi-vAxeUpnb4_Pk7tZGpSkLvW0NKyZTPBQakRWdlmUspTEGds8I2U0acwQSyv7_1EDBzSBCy8tZ1oNxe3hbtNuv3ccO7epYuD12te83UWHNsusBCvt_6iRpLRRRD0KBzS02xhbLl3TVhvf_jgEt9foeo1ur9EdNfaRm0OkYuY_3BCSzK36BQ0eawg</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Kwon, Kisoo</creator><creator>Shin, Jong Won</creator><creator>Kim, Nam Soo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>NMF-Based Speech Enhancement Using Bases Update</title><author>Kwon, Kisoo ; Shin, Jong Won ; Kim, Nam Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Factorization</topic><topic>Gain</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Non-negative matrix factorization</topic><topic>on-line bases update</topic><topic>On-line systems</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Speech enhancement</topic><topic>Statistical analysis</topic><topic>statistical model-based enhancement</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Kisoo</creatorcontrib><creatorcontrib>Shin, Jong Won</creatorcontrib><creatorcontrib>Kim, Nam Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Kisoo</au><au>Shin, Jong Won</au><au>Kim, Nam Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMF-Based Speech Enhancement Using Bases Update</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-04</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><spage>450</spage><epage>454</epage><pages>450-454</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter presents a speech enhancement technique combining statistical models and non-negative matrix factorization (NMF) with on-line update of speech and noise bases. The statistical model-based enhancement methods have been known to be less effective to non-stationary noises while the template-based enhancement techniques can deal with them quite well. However, the template-based enhancement techniques usually rely on a priori information. To overcome the shortcomings of both approaches, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. Experimental results showed that the proposed method outperformed not only the statistical model-based and NMF approaches, but also their combination in various noise environments.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2014.2362556</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-04, Vol.22 (4), p.450-454
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_6919287
source IEEE Xplore (Online service)
subjects Computational modeling
Factorization
Gain
Mathematical models
Noise
Non-negative matrix factorization
on-line bases update
On-line systems
Signal processing
Speech
Speech enhancement
Statistical analysis
statistical model-based enhancement
Training
Vectors
title NMF-Based Speech Enhancement Using Bases Update
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMF-Based%20Speech%20Enhancement%20Using%20Bases%20Update&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Kwon,%20Kisoo&rft.date=2015-04&rft.volume=22&rft.issue=4&rft.spage=450&rft.epage=454&rft.pages=450-454&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2362556&rft_dat=%3Cproquest_ieee_%3E1629356399%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-a9b6e5e96ca0f511e37bdf2f29e4e7849365951411f72110150ec16ceda27e453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1629356399&rft_id=info:pmid/&rft_ieee_id=6919287&rfr_iscdi=true