Loading…
Transferring human navigation behaviors into a robot local planner
Robot navigation in human environments is an active research area that poses serious challenges. Among them, social navigation and human-awareness has gain lot of attention in the last years due to its important role in human safety and robot acceptance. Learning has been proposed as a more principl...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Robot navigation in human environments is an active research area that poses serious challenges. Among them, social navigation and human-awareness has gain lot of attention in the last years due to its important role in human safety and robot acceptance. Learning has been proposed as a more principled way of estimating the insights of human social interactions. In this paper, inverse reinforcement learning is analyzed as a tool to transfer the typical human navigation behavior to the robot local navigation planner. Observations of real human motion interactions found in one publicly available datasets are employed to learn a cost function, which is then used to determine a navigation controller. The paper presents an analysis of the performance of the controller behavior in two different scenarios interacting with persons, and a comparison of this approach with a Proxemics-based method. |
---|---|
ISSN: | 1944-9445 1944-9437 |
DOI: | 10.1109/ROMAN.2014.6926347 |