Loading…

Fast Pedestrian Detection Using a Night Vision System for Safety Driving

This paper proposes a rapid pedestrian-detection algorithm for thermal images by using energy symmetry and oriented center-symmetric local binary pattern (OCS-LBP) features based on luminance saliency. During preprocessing, energy symmetry based on luminance saliency is used as the filter to remove...

Full description

Saved in:
Bibliographic Details
Main Authors: Mi Ra Jeong, Jun-Yong Kwak, Jung Eun Son, ByoungChul Ko, Jae-Yeal Nam
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 72
container_issue
container_start_page 69
container_title
container_volume
creator Mi Ra Jeong
Jun-Yong Kwak
Jung Eun Son
ByoungChul Ko
Jae-Yeal Nam
description This paper proposes a rapid pedestrian-detection algorithm for thermal images by using energy symmetry and oriented center-symmetric local binary pattern (OCS-LBP) features based on luminance saliency. During preprocessing, energy symmetry based on luminance saliency is used as the filter to remove objects and to reduce the pedestrian classification time. The OCS-LBP feature is then extracted from a candidate window and subjected to a random forest classifier (RF) that separates candidate windows into pedestrian and non-pedestrian classes. The proposed algorithm has been successfully applied to various thermal images captured in a car, and its detection performance is better than that of other methods.
doi_str_mv 10.1109/CGiV.2014.25
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6934123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6934123</ieee_id><sourcerecordid>6934123</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-721cfa0afed98cf4f7829fa77e6ea1e9ed3105e52d984381da5d160405f6f423</originalsourceid><addsrcrecordid>eNotjE1LAzEUReNCUGt37tzkD8z4Xj4myVKmthWKLbR2W8LMS43YqUyCMP_ekbq6cM89l7EHhBIR3FO9iPtSAKpS6Ct2h8o4p40Ae8OmKX0CALrKglW3bDn3KfMNtZRyH33HZ5SpyfHc8fcUuyP3_C0ePzLfx_RXboeU6cTDuedbHygPfNbHn3F4z66D_0o0_c8J281fdvWyWK0Xr_XzqohodC6MwCZ4GNXW2SaoYKxwwRtDFXkkR61E0KTFiJW02HrdYgUKdKiCEnLCHi-3kYgO3308-X44VE4qFFL-AigLSSE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast Pedestrian Detection Using a Night Vision System for Safety Driving</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mi Ra Jeong ; Jun-Yong Kwak ; Jung Eun Son ; ByoungChul Ko ; Jae-Yeal Nam</creator><creatorcontrib>Mi Ra Jeong ; Jun-Yong Kwak ; Jung Eun Son ; ByoungChul Ko ; Jae-Yeal Nam</creatorcontrib><description>This paper proposes a rapid pedestrian-detection algorithm for thermal images by using energy symmetry and oriented center-symmetric local binary pattern (OCS-LBP) features based on luminance saliency. During preprocessing, energy symmetry based on luminance saliency is used as the filter to remove objects and to reduce the pedestrian classification time. The OCS-LBP feature is then extracted from a candidate window and subjected to a random forest classifier (RF) that separates candidate windows into pedestrian and non-pedestrian classes. The proposed algorithm has been successfully applied to various thermal images captured in a car, and its detection performance is better than that of other methods.</description><identifier>EISBN: 1479957208</identifier><identifier>EISBN: 9781479957200</identifier><identifier>DOI: 10.1109/CGiV.2014.25</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Classification algorithms ; Feature extraction ; Pedestrian detection; thermal image; luminance saliency; energy symmetry; random forest ; Radio frequency ; Thermal energy ; Thermal sensors ; Training</subject><ispartof>2014 11th International Conference on Computer Graphics, Imaging and Visualization, 2014, p.69-72</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6934123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6934123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mi Ra Jeong</creatorcontrib><creatorcontrib>Jun-Yong Kwak</creatorcontrib><creatorcontrib>Jung Eun Son</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>Jae-Yeal Nam</creatorcontrib><title>Fast Pedestrian Detection Using a Night Vision System for Safety Driving</title><title>2014 11th International Conference on Computer Graphics, Imaging and Visualization</title><addtitle>CGIV</addtitle><description>This paper proposes a rapid pedestrian-detection algorithm for thermal images by using energy symmetry and oriented center-symmetric local binary pattern (OCS-LBP) features based on luminance saliency. During preprocessing, energy symmetry based on luminance saliency is used as the filter to remove objects and to reduce the pedestrian classification time. The OCS-LBP feature is then extracted from a candidate window and subjected to a random forest classifier (RF) that separates candidate windows into pedestrian and non-pedestrian classes. The proposed algorithm has been successfully applied to various thermal images captured in a car, and its detection performance is better than that of other methods.</description><subject>Cameras</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Pedestrian detection; thermal image; luminance saliency; energy symmetry; random forest</subject><subject>Radio frequency</subject><subject>Thermal energy</subject><subject>Thermal sensors</subject><subject>Training</subject><isbn>1479957208</isbn><isbn>9781479957200</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LAzEUReNCUGt37tzkD8z4Xj4myVKmthWKLbR2W8LMS43YqUyCMP_ekbq6cM89l7EHhBIR3FO9iPtSAKpS6Ct2h8o4p40Ae8OmKX0CALrKglW3bDn3KfMNtZRyH33HZ5SpyfHc8fcUuyP3_C0ePzLfx_RXboeU6cTDuedbHygPfNbHn3F4z66D_0o0_c8J281fdvWyWK0Xr_XzqohodC6MwCZ4GNXW2SaoYKxwwRtDFXkkR61E0KTFiJW02HrdYgUKdKiCEnLCHi-3kYgO3308-X44VE4qFFL-AigLSSE</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Mi Ra Jeong</creator><creator>Jun-Yong Kwak</creator><creator>Jung Eun Son</creator><creator>ByoungChul Ko</creator><creator>Jae-Yeal Nam</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201408</creationdate><title>Fast Pedestrian Detection Using a Night Vision System for Safety Driving</title><author>Mi Ra Jeong ; Jun-Yong Kwak ; Jung Eun Son ; ByoungChul Ko ; Jae-Yeal Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-721cfa0afed98cf4f7829fa77e6ea1e9ed3105e52d984381da5d160405f6f423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Pedestrian detection; thermal image; luminance saliency; energy symmetry; random forest</topic><topic>Radio frequency</topic><topic>Thermal energy</topic><topic>Thermal sensors</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Mi Ra Jeong</creatorcontrib><creatorcontrib>Jun-Yong Kwak</creatorcontrib><creatorcontrib>Jung Eun Son</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>Jae-Yeal Nam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mi Ra Jeong</au><au>Jun-Yong Kwak</au><au>Jung Eun Son</au><au>ByoungChul Ko</au><au>Jae-Yeal Nam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast Pedestrian Detection Using a Night Vision System for Safety Driving</atitle><btitle>2014 11th International Conference on Computer Graphics, Imaging and Visualization</btitle><stitle>CGIV</stitle><date>2014-08</date><risdate>2014</risdate><spage>69</spage><epage>72</epage><pages>69-72</pages><eisbn>1479957208</eisbn><eisbn>9781479957200</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a rapid pedestrian-detection algorithm for thermal images by using energy symmetry and oriented center-symmetric local binary pattern (OCS-LBP) features based on luminance saliency. During preprocessing, energy symmetry based on luminance saliency is used as the filter to remove objects and to reduce the pedestrian classification time. The OCS-LBP feature is then extracted from a candidate window and subjected to a random forest classifier (RF) that separates candidate windows into pedestrian and non-pedestrian classes. The proposed algorithm has been successfully applied to various thermal images captured in a car, and its detection performance is better than that of other methods.</abstract><pub>IEEE</pub><doi>10.1109/CGiV.2014.25</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479957208
ispartof 2014 11th International Conference on Computer Graphics, Imaging and Visualization, 2014, p.69-72
issn
language eng
recordid cdi_ieee_primary_6934123
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Classification algorithms
Feature extraction
Pedestrian detection
thermal image
luminance saliency
energy symmetry
random forest
Radio frequency
Thermal energy
Thermal sensors
Training
title Fast Pedestrian Detection Using a Night Vision System for Safety Driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20Pedestrian%20Detection%20Using%20a%20Night%20Vision%20System%20for%20Safety%20Driving&rft.btitle=2014%2011th%20International%20Conference%20on%20Computer%20Graphics,%20Imaging%20and%20Visualization&rft.au=Mi%20Ra%20Jeong&rft.date=2014-08&rft.spage=69&rft.epage=72&rft.pages=69-72&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CGiV.2014.25&rft.eisbn=1479957208&rft.eisbn_list=9781479957200&rft_dat=%3Cieee_6IE%3E6934123%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-721cfa0afed98cf4f7829fa77e6ea1e9ed3105e52d984381da5d160405f6f423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6934123&rfr_iscdi=true