Loading…
Design of Class E resonant rectifiers and diode evaluation for VHF power conversion
Resonant rectifiers have important applications in very-high-frequency (VHF) power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resonant rectifiers have important applications in very-high-frequency (VHF) power conversion systems, including dc-dc converters, wireless power transfer systems, and energy recovery circuits for radio-frequency systems. In many of these applications, it is desirable for the rectifier to appear as a resistor at its ac input port. However, for a given dc output voltage, the input impedance of a resonant rectifier varies in magnitude and phase as output power changes. This paper presents a design methodology for Class E rectifiers that maintain near-resistive input impedance along with the experimental demonstration of this approach. Resonant rectifiers operating at 30 MHz over 10:1 and 2:1 power ranges are used to validate the design methodology and identify its limits. Furthermore, a number of Si Schottky diodes are experimentally evaluated for VHF rectification and categorized based on performance. |
---|---|
ISSN: | 2329-3721 2329-3748 |
DOI: | 10.1109/ECCE.2014.6953763 |