Loading…
Diffusion LMS for multitask problems with overlapping hypothesis subspaces
There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Jie Chen Richard, Cedric Hero, Alfred O. Sayed, Ali H. |
description | There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperative algorithm based on diffusion adaptation is derived. Some results on its stability and convergence properties are also provided. Simulations are conducted to illustrate the theoretical results. |
doi_str_mv | 10.1109/MLSP.2014.6958929 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6958929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6958929</ieee_id><sourcerecordid>6958929</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-c449b2455063464f157ea25eecd1a8b810d5e0d7fdd52ef9ce94ac088483abaf3</originalsourceid><addsrcrecordid>eNot0L1OwzAUQGGDQKIqfQDE4hdI8fVP7DuiAgWUCqSCxFY5yTU1JE0Up6C-PQOdzvYNh7ErEHMAgTerYv06lwL0PEfjUOIJm6F1oC2iylHnp2wilXUZSvdxxiZgDGTSaLhgs5S-hBCAubVOTdjzXQxhn2K348VqzUM38HbfjHH06Zv3Q1c21Cb-G8ct735oaHzfx90n3x76btxSiomnfZl6X1G6ZOfBN4lmx07Z-8P92-IxK16WT4vbIosS3JhVWmMptTEiVzrXAYwlLw1RVYN3pQNRGxK1DXVtJAWsCLWvhHPaKV_6oKbs-t-NRLTph9j64bA5nlB_Gf5RlQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Diffusion LMS for multitask problems with overlapping hypothesis subspaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jie Chen ; Richard, Cedric ; Hero, Alfred O. ; Sayed, Ali H.</creator><creatorcontrib>Jie Chen ; Richard, Cedric ; Hero, Alfred O. ; Sayed, Ali H.</creatorcontrib><description>There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperative algorithm based on diffusion adaptation is derived. Some results on its stability and convergence properties are also provided. Simulations are conducted to illustrate the theoretical results.</description><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781479936946</identifier><identifier>EISBN: 1479936944</identifier><identifier>DOI: 10.1109/MLSP.2014.6958929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; collaborative processing ; Convergence ; diffusion strategy ; distributed optimization ; Estimation ; Least squares approximations ; Multitask learning ; Optimization ; Signal processing algorithms ; Vectors</subject><ispartof>2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2014, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6958929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6958929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Chen</creatorcontrib><creatorcontrib>Richard, Cedric</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><title>Diffusion LMS for multitask problems with overlapping hypothesis subspaces</title><title>2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperative algorithm based on diffusion adaptation is derived. Some results on its stability and convergence properties are also provided. Simulations are conducted to illustrate the theoretical results.</description><subject>Adaptive systems</subject><subject>collaborative processing</subject><subject>Convergence</subject><subject>diffusion strategy</subject><subject>distributed optimization</subject><subject>Estimation</subject><subject>Least squares approximations</subject><subject>Multitask learning</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>Vectors</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>9781479936946</isbn><isbn>1479936944</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0L1OwzAUQGGDQKIqfQDE4hdI8fVP7DuiAgWUCqSCxFY5yTU1JE0Up6C-PQOdzvYNh7ErEHMAgTerYv06lwL0PEfjUOIJm6F1oC2iylHnp2wilXUZSvdxxiZgDGTSaLhgs5S-hBCAubVOTdjzXQxhn2K348VqzUM38HbfjHH06Zv3Q1c21Cb-G8ct735oaHzfx90n3x76btxSiomnfZl6X1G6ZOfBN4lmx07Z-8P92-IxK16WT4vbIosS3JhVWmMptTEiVzrXAYwlLw1RVYN3pQNRGxK1DXVtJAWsCLWvhHPaKV_6oKbs-t-NRLTph9j64bA5nlB_Gf5RlQ</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Jie Chen</creator><creator>Richard, Cedric</creator><creator>Hero, Alfred O.</creator><creator>Sayed, Ali H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20141114</creationdate><title>Diffusion LMS for multitask problems with overlapping hypothesis subspaces</title><author>Jie Chen ; Richard, Cedric ; Hero, Alfred O. ; Sayed, Ali H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-c449b2455063464f157ea25eecd1a8b810d5e0d7fdd52ef9ce94ac088483abaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive systems</topic><topic>collaborative processing</topic><topic>Convergence</topic><topic>diffusion strategy</topic><topic>distributed optimization</topic><topic>Estimation</topic><topic>Least squares approximations</topic><topic>Multitask learning</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Chen</creatorcontrib><creatorcontrib>Richard, Cedric</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Sayed, Ali H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Chen</au><au>Richard, Cedric</au><au>Hero, Alfred O.</au><au>Sayed, Ali H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Diffusion LMS for multitask problems with overlapping hypothesis subspaces</atitle><btitle>2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2014-11-14</date><risdate>2014</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><eisbn>9781479936946</eisbn><eisbn>1479936944</eisbn><abstract>There are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously by networked agents. In this paper, we formulate an online multitask learning problem where node hypothesis spaces partly overlap. A cooperative algorithm based on diffusion adaptation is derived. Some results on its stability and convergence properties are also provided. Simulations are conducted to illustrate the theoretical results.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2014.6958929</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2014, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_6958929 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems collaborative processing Convergence diffusion strategy distributed optimization Estimation Least squares approximations Multitask learning Optimization Signal processing algorithms Vectors |
title | Diffusion LMS for multitask problems with overlapping hypothesis subspaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Diffusion%20LMS%20for%20multitask%20problems%20with%20overlapping%20hypothesis%20subspaces&rft.btitle=2014%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Jie%20Chen&rft.date=2014-11-14&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft_id=info:doi/10.1109/MLSP.2014.6958929&rft.eisbn=9781479936946&rft.eisbn_list=1479936944&rft_dat=%3Cieee_6IE%3E6958929%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-c449b2455063464f157ea25eecd1a8b810d5e0d7fdd52ef9ce94ac088483abaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6958929&rfr_iscdi=true |