Loading…
High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers
A multiscale hierarchical lithium-ion battery (LIB) anode composed of Si shells coaxially coated on vertically aligned carbon nanofibers has been explored. A high Li storage capacity of ~3,000-3,500 mAh (g Si ) -1 and > 99% Coulombic efficiency have been obtained. Remarkable stability over 500 ch...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multiscale hierarchical lithium-ion battery (LIB) anode composed of Si shells coaxially coated on vertically aligned carbon nanofibers has been explored. A high Li storage capacity of ~3,000-3,500 mAh (g Si ) -1 and > 99% Coulombic efficiency have been obtained. Remarkable stability over 500 charge-discharge cycles have been demonstrated. Particularly, this electrode present a high-rate capability that the capacity remains within ~7% as the C-rate was increased from ~C/10 to ~8C. Electron microscopy, Raman spectroscopy and electrochemical impedance spectroscopy revealed that the electrode structure remains stable during long cycling. This high-rate property is likely associated with the unique nanocolumnar microstructure of Si in the shell. It reveals an exciting potential to develop high-performance LIBs. |
---|---|
ISSN: | 1944-9399 1944-9380 |
DOI: | 10.1109/NANO.2014.6967967 |