Loading…
View-Invariant Gesture Recognition Using Nonparametric Shape Descriptor
In this paper we propose a new method for view-invariant gesture recognition, based on what we call nonparametric shape descriptor. We represent gestures as 3D motion trajectories and then we prove that the shape of a trajectory is equivalent to the Euclidean distances between all its points. The se...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we propose a new method for view-invariant gesture recognition, based on what we call nonparametric shape descriptor. We represent gestures as 3D motion trajectories and then we prove that the shape of a trajectory is equivalent to the Euclidean distances between all its points. The set of point-to-point distances description is mapped to a high-dimensional kernel space by kernel principal component analysis (KPCA), and then nonparametric discriminant analysis (NDA) is used to extract the view-invariant shape features as the input for pattern classification. The algorithm is performed on a public dataset, and shows better view-invariant performance than other state-of-the-art methods. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2014.104 |