Loading…

Pyramidal Fisher Motion for Multiview Gait Recognition

The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art...

Full description

Saved in:
Bibliographic Details
Main Authors: Castro, Francisco M., Marin-Jimenez, Manuel J., Medina-Carnicer, Rafael
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1697
container_issue
container_start_page 1692
container_title
container_volume
creator Castro, Francisco M.
Marin-Jimenez, Manuel J.
Medina-Carnicer, Rafael
description The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent 'AVA Multiview Gait' dataset [3]. The results show that this new approach achieves promising results in the problem of gait recognition.
doi_str_mv 10.1109/ICPR.2014.298
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6977009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6977009</ieee_id><sourcerecordid>6977009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-e87457e4e03901ab8655aae1d05035a5dc8b679c015c76f266658c1918d738ff3</originalsourceid><addsrcrecordid>eNotjNFKwzAUQKMoWOceffIlP9B6b5Kb5D5KcXMwcQx9HmmbaqBbpa3K_l5Fn86BA0eIa4QCEfh2VW62hQI0hWJ_Ii7ROGZSwHQqMuU15s44OhMZAmFuLOGFmI9jqkBZZ43WnAm7OQ5hn5rQyUUa3-IgH_sp9QfZ9j_60U3pM8UvuQxpkttY96-H9JuvxHkbujHO_zkTL4v75_IhXz8tV-XdOk8KzZRH7wy5aCJoBgyVt0QhRGyAQFOgpvaVdVwDUu1sq6y15Gtk9I3Tvm31TNz8fVOMcfc-pH0YjjvLzgGw_gabb0ZN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pyramidal Fisher Motion for Multiview Gait Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Castro, Francisco M. ; Marin-Jimenez, Manuel J. ; Medina-Carnicer, Rafael</creator><creatorcontrib>Castro, Francisco M. ; Marin-Jimenez, Manuel J. ; Medina-Carnicer, Rafael</creatorcontrib><description>The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent 'AVA Multiview Gait' dataset [3]. The results show that this new approach achieves promising results in the problem of gait recognition.</description><identifier>ISSN: 1051-4651</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 1479952095</identifier><identifier>EISBN: 9781479952090</identifier><identifier>DOI: 10.1109/ICPR.2014.298</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Encoding ; Feature extraction ; Fisher Vectors ; Gait ; Gait recognition ; motion ; Training ; Trajectory ; Vectors</subject><ispartof>2014 22nd International Conference on Pattern Recognition, 2014, p.1692-1697</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6977009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6977009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Castro, Francisco M.</creatorcontrib><creatorcontrib>Marin-Jimenez, Manuel J.</creatorcontrib><creatorcontrib>Medina-Carnicer, Rafael</creatorcontrib><title>Pyramidal Fisher Motion for Multiview Gait Recognition</title><title>2014 22nd International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent 'AVA Multiview Gait' dataset [3]. The results show that this new approach achieves promising results in the problem of gait recognition.</description><subject>Cameras</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Fisher Vectors</subject><subject>Gait</subject><subject>Gait recognition</subject><subject>motion</subject><subject>Training</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1479952095</isbn><isbn>9781479952090</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjNFKwzAUQKMoWOceffIlP9B6b5Kb5D5KcXMwcQx9HmmbaqBbpa3K_l5Fn86BA0eIa4QCEfh2VW62hQI0hWJ_Ii7ROGZSwHQqMuU15s44OhMZAmFuLOGFmI9jqkBZZ43WnAm7OQ5hn5rQyUUa3-IgH_sp9QfZ9j_60U3pM8UvuQxpkttY96-H9JuvxHkbujHO_zkTL4v75_IhXz8tV-XdOk8KzZRH7wy5aCJoBgyVt0QhRGyAQFOgpvaVdVwDUu1sq6y15Gtk9I3Tvm31TNz8fVOMcfc-pH0YjjvLzgGw_gabb0ZN</recordid><startdate>20141204</startdate><enddate>20141204</enddate><creator>Castro, Francisco M.</creator><creator>Marin-Jimenez, Manuel J.</creator><creator>Medina-Carnicer, Rafael</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20141204</creationdate><title>Pyramidal Fisher Motion for Multiview Gait Recognition</title><author>Castro, Francisco M. ; Marin-Jimenez, Manuel J. ; Medina-Carnicer, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-e87457e4e03901ab8655aae1d05035a5dc8b679c015c76f266658c1918d738ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Fisher Vectors</topic><topic>Gait</topic><topic>Gait recognition</topic><topic>motion</topic><topic>Training</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Castro, Francisco M.</creatorcontrib><creatorcontrib>Marin-Jimenez, Manuel J.</creatorcontrib><creatorcontrib>Medina-Carnicer, Rafael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castro, Francisco M.</au><au>Marin-Jimenez, Manuel J.</au><au>Medina-Carnicer, Rafael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pyramidal Fisher Motion for Multiview Gait Recognition</atitle><btitle>2014 22nd International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2014-12-04</date><risdate>2014</risdate><spage>1692</spage><epage>1697</epage><pages>1692-1697</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><eisbn>1479952095</eisbn><eisbn>9781479952090</eisbn><coden>IEEPAD</coden><abstract>The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [1]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [2]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent 'AVA Multiview Gait' dataset [3]. The results show that this new approach achieves promising results in the problem of gait recognition.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2014.298</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2014 22nd International Conference on Pattern Recognition, 2014, p.1692-1697
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6977009
source IEEE Xplore All Conference Series
subjects Cameras
Encoding
Feature extraction
Fisher Vectors
Gait
Gait recognition
motion
Training
Trajectory
Vectors
title Pyramidal Fisher Motion for Multiview Gait Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pyramidal%20Fisher%20Motion%20for%20Multiview%20Gait%20Recognition&rft.btitle=2014%2022nd%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Castro,%20Francisco%20M.&rft.date=2014-12-04&rft.spage=1692&rft.epage=1697&rft.pages=1692-1697&rft.issn=1051-4651&rft.eissn=2831-7475&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICPR.2014.298&rft.eisbn=1479952095&rft.eisbn_list=9781479952090&rft_dat=%3Cieee_CHZPO%3E6977009%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i214t-e87457e4e03901ab8655aae1d05035a5dc8b679c015c76f266658c1918d738ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6977009&rfr_iscdi=true