Loading…
A prediction-based optimal gain selection in RISE feedback control for hard disk drive
This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2119 |
container_issue | |
container_start_page | 2114 |
container_title | |
container_volume | |
creator | Taktak-Meziou, M. Chemori, A. Ghommam, J. Derbel, N. |
description | This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before. |
doi_str_mv | 10.1109/CCA.2014.6981615 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6981615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6981615</ieee_id><sourcerecordid>6981615</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhaMoWGv3gpv8gam5dybJZFmGWgsFwde25HFjY8eZkhkE_71FuzocPjh8HMZuQcwBhLlvmsUcBVRzZWpQIM_YzOgaKm2MroTBczZBqVVRIogLNgFRywKMwSt2PQyfQgitQU3Y-4IfMoXkx9R3hbMDBd4fxvRlW_5hU8cHaukP8mN5Xr8seSQKzvo993035r7lsc98Z3PgIQ17HnL6pht2GW070OyUU_b2sHxtHovN02rdLDbFDmU5FuBECKiC9DZEgyoabxxFrCIG54QnV6NSVDktajR1ZaN1YCWRtr6UGMspu_vfTUS0PeSjd_7Zni4pfwFfylPf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><source>IEEE Xplore All Conference Series</source><creator>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</creator><creatorcontrib>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</creatorcontrib><description>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</description><identifier>ISSN: 1085-1992</identifier><identifier>EISSN: 2576-3210</identifier><identifier>EISBN: 9781479974092</identifier><identifier>EISBN: 1479974099</identifier><identifier>DOI: 10.1109/CCA.2014.6981615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Closed loop systems ; Feedforward neural networks ; Optimized production technology ; Robustness ; Target tracking ; Uncertainty</subject><ispartof>2014 IEEE Conference on Control Applications (CCA), 2014, p.2114-2119</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6981615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6981615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taktak-Meziou, M.</creatorcontrib><creatorcontrib>Chemori, A.</creatorcontrib><creatorcontrib>Ghommam, J.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><title>2014 IEEE Conference on Control Applications (CCA)</title><addtitle>CCA</addtitle><description>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</description><subject>Artificial neural networks</subject><subject>Closed loop systems</subject><subject>Feedforward neural networks</subject><subject>Optimized production technology</subject><subject>Robustness</subject><subject>Target tracking</subject><subject>Uncertainty</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>9781479974092</isbn><isbn>1479974099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEUhaMoWGv3gpv8gam5dybJZFmGWgsFwde25HFjY8eZkhkE_71FuzocPjh8HMZuQcwBhLlvmsUcBVRzZWpQIM_YzOgaKm2MroTBczZBqVVRIogLNgFRywKMwSt2PQyfQgitQU3Y-4IfMoXkx9R3hbMDBd4fxvRlW_5hU8cHaukP8mN5Xr8seSQKzvo993035r7lsc98Z3PgIQ17HnL6pht2GW070OyUU_b2sHxtHovN02rdLDbFDmU5FuBECKiC9DZEgyoabxxFrCIG54QnV6NSVDktajR1ZaN1YCWRtr6UGMspu_vfTUS0PeSjd_7Zni4pfwFfylPf</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Taktak-Meziou, M.</creator><creator>Chemori, A.</creator><creator>Ghommam, J.</creator><creator>Derbel, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20140101</creationdate><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><author>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Closed loop systems</topic><topic>Feedforward neural networks</topic><topic>Optimized production technology</topic><topic>Robustness</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Taktak-Meziou, M.</creatorcontrib><creatorcontrib>Chemori, A.</creatorcontrib><creatorcontrib>Ghommam, J.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taktak-Meziou, M.</au><au>Chemori, A.</au><au>Ghommam, J.</au><au>Derbel, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</atitle><btitle>2014 IEEE Conference on Control Applications (CCA)</btitle><stitle>CCA</stitle><date>2014-01-01</date><risdate>2014</risdate><spage>2114</spage><epage>2119</epage><pages>2114-2119</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><eisbn>9781479974092</eisbn><eisbn>1479974099</eisbn><abstract>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</abstract><pub>IEEE</pub><doi>10.1109/CCA.2014.6981615</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1085-1992 |
ispartof | 2014 IEEE Conference on Control Applications (CCA), 2014, p.2114-2119 |
issn | 1085-1992 2576-3210 |
language | eng |
recordid | cdi_ieee_primary_6981615 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Closed loop systems Feedforward neural networks Optimized production technology Robustness Target tracking Uncertainty |
title | A prediction-based optimal gain selection in RISE feedback control for hard disk drive |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20prediction-based%20optimal%20gain%20selection%20in%20RISE%20feedback%20control%20for%20hard%20disk%20drive&rft.btitle=2014%20IEEE%20Conference%20on%20Control%20Applications%20(CCA)&rft.au=Taktak-Meziou,%20M.&rft.date=2014-01-01&rft.spage=2114&rft.epage=2119&rft.pages=2114-2119&rft.issn=1085-1992&rft.eissn=2576-3210&rft_id=info:doi/10.1109/CCA.2014.6981615&rft.eisbn=9781479974092&rft.eisbn_list=1479974099&rft_dat=%3Cieee_CHZPO%3E6981615%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6981615&rfr_iscdi=true |