Loading…

A prediction-based optimal gain selection in RISE feedback control for hard disk drive

This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed...

Full description

Saved in:
Bibliographic Details
Main Authors: Taktak-Meziou, M., Chemori, A., Ghommam, J., Derbel, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2119
container_issue
container_start_page 2114
container_title
container_volume
creator Taktak-Meziou, M.
Chemori, A.
Ghommam, J.
Derbel, N.
description This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.
doi_str_mv 10.1109/CCA.2014.6981615
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6981615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6981615</ieee_id><sourcerecordid>6981615</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhaMoWGv3gpv8gam5dybJZFmGWgsFwde25HFjY8eZkhkE_71FuzocPjh8HMZuQcwBhLlvmsUcBVRzZWpQIM_YzOgaKm2MroTBczZBqVVRIogLNgFRywKMwSt2PQyfQgitQU3Y-4IfMoXkx9R3hbMDBd4fxvRlW_5hU8cHaukP8mN5Xr8seSQKzvo993035r7lsc98Z3PgIQ17HnL6pht2GW070OyUU_b2sHxtHovN02rdLDbFDmU5FuBECKiC9DZEgyoabxxFrCIG54QnV6NSVDktajR1ZaN1YCWRtr6UGMspu_vfTUS0PeSjd_7Zni4pfwFfylPf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><source>IEEE Xplore All Conference Series</source><creator>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</creator><creatorcontrib>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</creatorcontrib><description>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</description><identifier>ISSN: 1085-1992</identifier><identifier>EISSN: 2576-3210</identifier><identifier>EISBN: 9781479974092</identifier><identifier>EISBN: 1479974099</identifier><identifier>DOI: 10.1109/CCA.2014.6981615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Closed loop systems ; Feedforward neural networks ; Optimized production technology ; Robustness ; Target tracking ; Uncertainty</subject><ispartof>2014 IEEE Conference on Control Applications (CCA), 2014, p.2114-2119</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6981615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6981615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taktak-Meziou, M.</creatorcontrib><creatorcontrib>Chemori, A.</creatorcontrib><creatorcontrib>Ghommam, J.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><title>2014 IEEE Conference on Control Applications (CCA)</title><addtitle>CCA</addtitle><description>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</description><subject>Artificial neural networks</subject><subject>Closed loop systems</subject><subject>Feedforward neural networks</subject><subject>Optimized production technology</subject><subject>Robustness</subject><subject>Target tracking</subject><subject>Uncertainty</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>9781479974092</isbn><isbn>1479974099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtLAzEUhaMoWGv3gpv8gam5dybJZFmGWgsFwde25HFjY8eZkhkE_71FuzocPjh8HMZuQcwBhLlvmsUcBVRzZWpQIM_YzOgaKm2MroTBczZBqVVRIogLNgFRywKMwSt2PQyfQgitQU3Y-4IfMoXkx9R3hbMDBd4fxvRlW_5hU8cHaukP8mN5Xr8seSQKzvo993035r7lsc98Z3PgIQ17HnL6pht2GW070OyUU_b2sHxtHovN02rdLDbFDmU5FuBECKiC9DZEgyoabxxFrCIG54QnV6NSVDktajR1ZaN1YCWRtr6UGMspu_vfTUS0PeSjd_7Zni4pfwFfylPf</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Taktak-Meziou, M.</creator><creator>Chemori, A.</creator><creator>Ghommam, J.</creator><creator>Derbel, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20140101</creationdate><title>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</title><author>Taktak-Meziou, M. ; Chemori, A. ; Ghommam, J. ; Derbel, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>Closed loop systems</topic><topic>Feedforward neural networks</topic><topic>Optimized production technology</topic><topic>Robustness</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Taktak-Meziou, M.</creatorcontrib><creatorcontrib>Chemori, A.</creatorcontrib><creatorcontrib>Ghommam, J.</creatorcontrib><creatorcontrib>Derbel, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taktak-Meziou, M.</au><au>Chemori, A.</au><au>Ghommam, J.</au><au>Derbel, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A prediction-based optimal gain selection in RISE feedback control for hard disk drive</atitle><btitle>2014 IEEE Conference on Control Applications (CCA)</btitle><stitle>CCA</stitle><date>2014-01-01</date><risdate>2014</risdate><spage>2114</spage><epage>2119</epage><pages>2114-2119</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><eisbn>9781479974092</eisbn><eisbn>1479974099</eisbn><abstract>This paper presents a prediction-based optimal gain selection in Robust Integral Sign of the Error (RISE) based Neural Network (NN) approach. Previous research has shown that combining a feedforward term with a feedback control element yields an asymptotically stable closed-loop system. The proposed approach adds a prediction-based optimal technique which minimizes a quadratic performance index to calculate an optimal feedback gain. The resulting novel controller, called P-RISE-NN, is applied for a track following problem of a Hard-Disc-Drive servo-system. Simulation studies are used to show the efficiency of the proposed control scheme and its robustness against external disturbances and parametric uncertainties in the system. The authors believe that the proposed control solution combining RISE with a predictive control approach has never been conducted before.</abstract><pub>IEEE</pub><doi>10.1109/CCA.2014.6981615</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1085-1992
ispartof 2014 IEEE Conference on Control Applications (CCA), 2014, p.2114-2119
issn 1085-1992
2576-3210
language eng
recordid cdi_ieee_primary_6981615
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Closed loop systems
Feedforward neural networks
Optimized production technology
Robustness
Target tracking
Uncertainty
title A prediction-based optimal gain selection in RISE feedback control for hard disk drive
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20prediction-based%20optimal%20gain%20selection%20in%20RISE%20feedback%20control%20for%20hard%20disk%20drive&rft.btitle=2014%20IEEE%20Conference%20on%20Control%20Applications%20(CCA)&rft.au=Taktak-Meziou,%20M.&rft.date=2014-01-01&rft.spage=2114&rft.epage=2119&rft.pages=2114-2119&rft.issn=1085-1992&rft.eissn=2576-3210&rft_id=info:doi/10.1109/CCA.2014.6981615&rft.eisbn=9781479974092&rft.eisbn_list=1479974099&rft_dat=%3Cieee_CHZPO%3E6981615%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h253t-1b0dd26d5cadf926f9c9bef24f2dbb0ceb8266e4b7082984afab1a5ee7ac352f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6981615&rfr_iscdi=true