Loading…

Sensor failure detection and recovery mechanism based on support vector and genetic algorithm

The main role of wireless sensor networks is to collect environmental data. As the sensor nodes are vulnerable and work in unpredictable environments, sensors are possible to fail and return unexpected response. Therefore, fault detection and recovery are important in wireless sensor networks. In th...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiehui Zhu, Yang Yang, Xuesong Qiu, Zhipeng Gao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Jiehui Zhu
Yang Yang
Xuesong Qiu
Zhipeng Gao
description The main role of wireless sensor networks is to collect environmental data. As the sensor nodes are vulnerable and work in unpredictable environments, sensors are possible to fail and return unexpected response. Therefore, fault detection and recovery are important in wireless sensor networks. In this paper, we propose a fault detection algorithm based on support vector regression, which predicts the measurements of sensor nodes by using historical data. Credit levels of sensor nodes will be determined by a contrast between predictions and actual measured values. In this paper we also propose a fault recovery algorithm according to the node credit levels combined with genetic algorithm. The simulation results demonstrate that the algorithms we propose work well in failure detection rate, fault recovery speed and energy consumption.
doi_str_mv 10.1109/APNOMS.2014.6996565
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6996565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6996565</ieee_id><sourcerecordid>6996565</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bdc32d76fdbfa8080f8fe2c61a0a279e28c1cea4b317608c34bfc4763af7e4dc3</originalsourceid><addsrcrecordid>eNotkMtqAjEYhdNFocXOE7jJC8w0yWRyWYr0BloLui2SSf5oinMhiYJv3yl1dRbnO9_iIDSnpKKU6OfF1-dmva0YobwSWotGNHeo0FJxpZqGMaXUAypS-iGEUC2E0uIRfW-hT0PE3oTTOQJ2kMHmMPTY9A5HsMMF4hV3YI-mD6nDrUng8NSn8zgOMePLxE-CP_wAPeRgsTkdhhjysXtC996cEhS3nKHd68tu-V6uNm8fy8WqDJrksnW2Zk4K71pvFFHEKw_MCmqIYVIDU5ZaMLytqRRE2Zq33nIpauMl8Gk8Q_N_bQCA_RhDZ-J1f_ug_gU9E1V7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensor failure detection and recovery mechanism based on support vector and genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiehui Zhu ; Yang Yang ; Xuesong Qiu ; Zhipeng Gao</creator><creatorcontrib>Jiehui Zhu ; Yang Yang ; Xuesong Qiu ; Zhipeng Gao</creatorcontrib><description>The main role of wireless sensor networks is to collect environmental data. As the sensor nodes are vulnerable and work in unpredictable environments, sensors are possible to fail and return unexpected response. Therefore, fault detection and recovery are important in wireless sensor networks. In this paper, we propose a fault detection algorithm based on support vector regression, which predicts the measurements of sensor nodes by using historical data. Credit levels of sensor nodes will be determined by a contrast between predictions and actual measured values. In this paper we also propose a fault recovery algorithm according to the node credit levels combined with genetic algorithm. The simulation results demonstrate that the algorithms we propose work well in failure detection rate, fault recovery speed and energy consumption.</description><identifier>EISBN: 9784885522888</identifier><identifier>EISBN: 4885522889</identifier><identifier>DOI: 10.1109/APNOMS.2014.6996565</identifier><language>eng</language><subject>Biological cells ; Clustering algorithms ; credibility level ; Fault detection ; fault recovery ; genetic algorithm ; Prediction algorithms ; Routing ; Support vector machines ; support vector regression ; Wireless sensor networks</subject><ispartof>The 16th Asia-Pacific Network Operations and Management Symposium, 2014, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6996565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6996565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiehui Zhu</creatorcontrib><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Xuesong Qiu</creatorcontrib><creatorcontrib>Zhipeng Gao</creatorcontrib><title>Sensor failure detection and recovery mechanism based on support vector and genetic algorithm</title><title>The 16th Asia-Pacific Network Operations and Management Symposium</title><addtitle>APNOMS</addtitle><description>The main role of wireless sensor networks is to collect environmental data. As the sensor nodes are vulnerable and work in unpredictable environments, sensors are possible to fail and return unexpected response. Therefore, fault detection and recovery are important in wireless sensor networks. In this paper, we propose a fault detection algorithm based on support vector regression, which predicts the measurements of sensor nodes by using historical data. Credit levels of sensor nodes will be determined by a contrast between predictions and actual measured values. In this paper we also propose a fault recovery algorithm according to the node credit levels combined with genetic algorithm. The simulation results demonstrate that the algorithms we propose work well in failure detection rate, fault recovery speed and energy consumption.</description><subject>Biological cells</subject><subject>Clustering algorithms</subject><subject>credibility level</subject><subject>Fault detection</subject><subject>fault recovery</subject><subject>genetic algorithm</subject><subject>Prediction algorithms</subject><subject>Routing</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>Wireless sensor networks</subject><isbn>9784885522888</isbn><isbn>4885522889</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtqAjEYhdNFocXOE7jJC8w0yWRyWYr0BloLui2SSf5oinMhiYJv3yl1dRbnO9_iIDSnpKKU6OfF1-dmva0YobwSWotGNHeo0FJxpZqGMaXUAypS-iGEUC2E0uIRfW-hT0PE3oTTOQJ2kMHmMPTY9A5HsMMF4hV3YI-mD6nDrUng8NSn8zgOMePLxE-CP_wAPeRgsTkdhhjysXtC996cEhS3nKHd68tu-V6uNm8fy8WqDJrksnW2Zk4K71pvFFHEKw_MCmqIYVIDU5ZaMLytqRRE2Zq33nIpauMl8Gk8Q_N_bQCA_RhDZ-J1f_ug_gU9E1V7</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Jiehui Zhu</creator><creator>Yang Yang</creator><creator>Xuesong Qiu</creator><creator>Zhipeng Gao</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201409</creationdate><title>Sensor failure detection and recovery mechanism based on support vector and genetic algorithm</title><author>Jiehui Zhu ; Yang Yang ; Xuesong Qiu ; Zhipeng Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bdc32d76fdbfa8080f8fe2c61a0a279e28c1cea4b317608c34bfc4763af7e4dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological cells</topic><topic>Clustering algorithms</topic><topic>credibility level</topic><topic>Fault detection</topic><topic>fault recovery</topic><topic>genetic algorithm</topic><topic>Prediction algorithms</topic><topic>Routing</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiehui Zhu</creatorcontrib><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Xuesong Qiu</creatorcontrib><creatorcontrib>Zhipeng Gao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiehui Zhu</au><au>Yang Yang</au><au>Xuesong Qiu</au><au>Zhipeng Gao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensor failure detection and recovery mechanism based on support vector and genetic algorithm</atitle><btitle>The 16th Asia-Pacific Network Operations and Management Symposium</btitle><stitle>APNOMS</stitle><date>2014-09</date><risdate>2014</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eisbn>9784885522888</eisbn><eisbn>4885522889</eisbn><abstract>The main role of wireless sensor networks is to collect environmental data. As the sensor nodes are vulnerable and work in unpredictable environments, sensors are possible to fail and return unexpected response. Therefore, fault detection and recovery are important in wireless sensor networks. In this paper, we propose a fault detection algorithm based on support vector regression, which predicts the measurements of sensor nodes by using historical data. Credit levels of sensor nodes will be determined by a contrast between predictions and actual measured values. In this paper we also propose a fault recovery algorithm according to the node credit levels combined with genetic algorithm. The simulation results demonstrate that the algorithms we propose work well in failure detection rate, fault recovery speed and energy consumption.</abstract><doi>10.1109/APNOMS.2014.6996565</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9784885522888
ispartof The 16th Asia-Pacific Network Operations and Management Symposium, 2014, p.1-4
issn
language eng
recordid cdi_ieee_primary_6996565
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Clustering algorithms
credibility level
Fault detection
fault recovery
genetic algorithm
Prediction algorithms
Routing
Support vector machines
support vector regression
Wireless sensor networks
title Sensor failure detection and recovery mechanism based on support vector and genetic algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensor%20failure%20detection%20and%20recovery%20mechanism%20based%20on%20support%20vector%20and%20genetic%20algorithm&rft.btitle=The%2016th%20Asia-Pacific%20Network%20Operations%20and%20Management%20Symposium&rft.au=Jiehui%20Zhu&rft.date=2014-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft_id=info:doi/10.1109/APNOMS.2014.6996565&rft.eisbn=9784885522888&rft.eisbn_list=4885522889&rft_dat=%3Cieee_6IE%3E6996565%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bdc32d76fdbfa8080f8fe2c61a0a279e28c1cea4b317608c34bfc4763af7e4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6996565&rfr_iscdi=true