Loading…

Fast and robust skew correction in scanned document images based on low-rank matrix decompositon

The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew e...

Full description

Saved in:
Bibliographic Details
Main Authors: Heng-You Wang, Rui-Zhen Zhao, Jing-An Cui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 887
container_issue
container_start_page 883
container_title
container_volume 2
creator Heng-You Wang
Rui-Zhen Zhao
Jing-An Cui
description The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.
doi_str_mv 10.1109/ICMLC.2014.7009726
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7009726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7009726</ieee_id><sourcerecordid>7009726</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483</originalsourceid><addsrcrecordid>eNo1UEFOwzAQNAIkSskH4OIPpHgTJ46PKKKlUhCXHrgVx14j08au7FSF3xOJMpfZGY1GqyHkHtgCgMnHdfvatYuCAV8IxqQo6guSSdEAF1LyAqriktz-i7q4IrOJWA5l-X5DspS-2ATBeSNhRj6WKo1UeUNj6I_TmXZ4ojrEiHp0wVPnadLKezTUBH0c0I_UDeoTE-1Vmtwpsw-nPCq_o4Mao_umBnUYDiG5Mfg7cm3VPmF25jnZLJ837Uveva3W7VOXO8nGXBjbW25ry3rV15wp5LaB2ijDBSiJVjDRQ2XqiktUpWG8Yhal1oASgDflnDz81TpE3B7i9GL82Z73KX8BZH1ZYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><source>IEEE Xplore All Conference Series</source><creator>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</creator><creatorcontrib>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</creatorcontrib><description>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1479942162</identifier><identifier>ISBN: 9781479942169</identifier><identifier>EISBN: 9781479942152</identifier><identifier>EISBN: 1479942170</identifier><identifier>EISBN: 9781479942176</identifier><identifier>EISBN: 1479942154</identifier><identifier>DOI: 10.1109/ICMLC.2014.7009726</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Approximation methods ; Hough Transformation ; Lead ; Low-Rank Matrix Decomposition ; Matching pursuit algorithms ; Matrix decomposition ; Robustness ; Scanned Document Images ; Skew Correction ; Transforms</subject><ispartof>2014 International Conference on Machine Learning and Cybernetics, 2014, Vol.2, p.883-887</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7009726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7009726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heng-You Wang</creatorcontrib><creatorcontrib>Rui-Zhen Zhao</creatorcontrib><creatorcontrib>Jing-An Cui</creatorcontrib><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><title>2014 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</description><subject>Abstracts</subject><subject>Approximation methods</subject><subject>Hough Transformation</subject><subject>Lead</subject><subject>Low-Rank Matrix Decomposition</subject><subject>Matching pursuit algorithms</subject><subject>Matrix decomposition</subject><subject>Robustness</subject><subject>Scanned Document Images</subject><subject>Skew Correction</subject><subject>Transforms</subject><issn>2160-133X</issn><isbn>1479942162</isbn><isbn>9781479942169</isbn><isbn>9781479942152</isbn><isbn>1479942170</isbn><isbn>9781479942176</isbn><isbn>1479942154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UEFOwzAQNAIkSskH4OIPpHgTJ46PKKKlUhCXHrgVx14j08au7FSF3xOJMpfZGY1GqyHkHtgCgMnHdfvatYuCAV8IxqQo6guSSdEAF1LyAqriktz-i7q4IrOJWA5l-X5DspS-2ATBeSNhRj6WKo1UeUNj6I_TmXZ4ojrEiHp0wVPnadLKezTUBH0c0I_UDeoTE-1Vmtwpsw-nPCq_o4Mao_umBnUYDiG5Mfg7cm3VPmF25jnZLJ837Uveva3W7VOXO8nGXBjbW25ry3rV15wp5LaB2ijDBSiJVjDRQ2XqiktUpWG8Yhal1oASgDflnDz81TpE3B7i9GL82Z73KX8BZH1ZYQ</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Heng-You Wang</creator><creator>Rui-Zhen Zhao</creator><creator>Jing-An Cui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><author>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstracts</topic><topic>Approximation methods</topic><topic>Hough Transformation</topic><topic>Lead</topic><topic>Low-Rank Matrix Decomposition</topic><topic>Matching pursuit algorithms</topic><topic>Matrix decomposition</topic><topic>Robustness</topic><topic>Scanned Document Images</topic><topic>Skew Correction</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Heng-You Wang</creatorcontrib><creatorcontrib>Rui-Zhen Zhao</creatorcontrib><creatorcontrib>Jing-An Cui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heng-You Wang</au><au>Rui-Zhen Zhao</au><au>Jing-An Cui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</atitle><btitle>2014 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2014-07</date><risdate>2014</risdate><volume>2</volume><spage>883</spage><epage>887</epage><pages>883-887</pages><issn>2160-133X</issn><isbn>1479942162</isbn><isbn>9781479942169</isbn><eisbn>9781479942152</eisbn><eisbn>1479942170</eisbn><eisbn>9781479942176</eisbn><eisbn>1479942154</eisbn><abstract>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2014.7009726</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2014 International Conference on Machine Learning and Cybernetics, 2014, Vol.2, p.883-887
issn 2160-133X
language eng
recordid cdi_ieee_primary_7009726
source IEEE Xplore All Conference Series
subjects Abstracts
Approximation methods
Hough Transformation
Lead
Low-Rank Matrix Decomposition
Matching pursuit algorithms
Matrix decomposition
Robustness
Scanned Document Images
Skew Correction
Transforms
title Fast and robust skew correction in scanned document images based on low-rank matrix decompositon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20and%20robust%20skew%20correction%20in%20scanned%20document%20images%20based%20on%20low-rank%20matrix%20decompositon&rft.btitle=2014%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Heng-You%20Wang&rft.date=2014-07&rft.volume=2&rft.spage=883&rft.epage=887&rft.pages=883-887&rft.issn=2160-133X&rft.isbn=1479942162&rft.isbn_list=9781479942169&rft_id=info:doi/10.1109/ICMLC.2014.7009726&rft.eisbn=9781479942152&rft.eisbn_list=1479942170&rft.eisbn_list=9781479942176&rft.eisbn_list=1479942154&rft_dat=%3Cieee_CHZPO%3E7009726%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7009726&rfr_iscdi=true