Loading…
Fast and robust skew correction in scanned document images based on low-rank matrix decompositon
The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew e...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 887 |
container_issue | |
container_start_page | 883 |
container_title | |
container_volume | 2 |
creator | Heng-You Wang Rui-Zhen Zhao Jing-An Cui |
description | The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on. |
doi_str_mv | 10.1109/ICMLC.2014.7009726 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7009726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7009726</ieee_id><sourcerecordid>7009726</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483</originalsourceid><addsrcrecordid>eNo1UEFOwzAQNAIkSskH4OIPpHgTJ46PKKKlUhCXHrgVx14j08au7FSF3xOJMpfZGY1GqyHkHtgCgMnHdfvatYuCAV8IxqQo6guSSdEAF1LyAqriktz-i7q4IrOJWA5l-X5DspS-2ATBeSNhRj6WKo1UeUNj6I_TmXZ4ojrEiHp0wVPnadLKezTUBH0c0I_UDeoTE-1Vmtwpsw-nPCq_o4Mao_umBnUYDiG5Mfg7cm3VPmF25jnZLJ837Uveva3W7VOXO8nGXBjbW25ry3rV15wp5LaB2ijDBSiJVjDRQ2XqiktUpWG8Yhal1oASgDflnDz81TpE3B7i9GL82Z73KX8BZH1ZYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><source>IEEE Xplore All Conference Series</source><creator>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</creator><creatorcontrib>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</creatorcontrib><description>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1479942162</identifier><identifier>ISBN: 9781479942169</identifier><identifier>EISBN: 9781479942152</identifier><identifier>EISBN: 1479942170</identifier><identifier>EISBN: 9781479942176</identifier><identifier>EISBN: 1479942154</identifier><identifier>DOI: 10.1109/ICMLC.2014.7009726</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Approximation methods ; Hough Transformation ; Lead ; Low-Rank Matrix Decomposition ; Matching pursuit algorithms ; Matrix decomposition ; Robustness ; Scanned Document Images ; Skew Correction ; Transforms</subject><ispartof>2014 International Conference on Machine Learning and Cybernetics, 2014, Vol.2, p.883-887</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7009726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7009726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heng-You Wang</creatorcontrib><creatorcontrib>Rui-Zhen Zhao</creatorcontrib><creatorcontrib>Jing-An Cui</creatorcontrib><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><title>2014 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</description><subject>Abstracts</subject><subject>Approximation methods</subject><subject>Hough Transformation</subject><subject>Lead</subject><subject>Low-Rank Matrix Decomposition</subject><subject>Matching pursuit algorithms</subject><subject>Matrix decomposition</subject><subject>Robustness</subject><subject>Scanned Document Images</subject><subject>Skew Correction</subject><subject>Transforms</subject><issn>2160-133X</issn><isbn>1479942162</isbn><isbn>9781479942169</isbn><isbn>9781479942152</isbn><isbn>1479942170</isbn><isbn>9781479942176</isbn><isbn>1479942154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UEFOwzAQNAIkSskH4OIPpHgTJ46PKKKlUhCXHrgVx14j08au7FSF3xOJMpfZGY1GqyHkHtgCgMnHdfvatYuCAV8IxqQo6guSSdEAF1LyAqriktz-i7q4IrOJWA5l-X5DspS-2ATBeSNhRj6WKo1UeUNj6I_TmXZ4ojrEiHp0wVPnadLKezTUBH0c0I_UDeoTE-1Vmtwpsw-nPCq_o4Mao_umBnUYDiG5Mfg7cm3VPmF25jnZLJ837Uveva3W7VOXO8nGXBjbW25ry3rV15wp5LaB2ijDBSiJVjDRQ2XqiktUpWG8Yhal1oASgDflnDz81TpE3B7i9GL82Z73KX8BZH1ZYQ</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Heng-You Wang</creator><creator>Rui-Zhen Zhao</creator><creator>Jing-An Cui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</title><author>Heng-You Wang ; Rui-Zhen Zhao ; Jing-An Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstracts</topic><topic>Approximation methods</topic><topic>Hough Transformation</topic><topic>Lead</topic><topic>Low-Rank Matrix Decomposition</topic><topic>Matching pursuit algorithms</topic><topic>Matrix decomposition</topic><topic>Robustness</topic><topic>Scanned Document Images</topic><topic>Skew Correction</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Heng-You Wang</creatorcontrib><creatorcontrib>Rui-Zhen Zhao</creatorcontrib><creatorcontrib>Jing-An Cui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heng-You Wang</au><au>Rui-Zhen Zhao</au><au>Jing-An Cui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast and robust skew correction in scanned document images based on low-rank matrix decompositon</atitle><btitle>2014 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2014-07</date><risdate>2014</risdate><volume>2</volume><spage>883</spage><epage>887</epage><pages>883-887</pages><issn>2160-133X</issn><isbn>1479942162</isbn><isbn>9781479942169</isbn><eisbn>9781479942152</eisbn><eisbn>1479942170</eisbn><eisbn>9781479942176</eisbn><eisbn>1479942154</eisbn><abstract>The most important of skew correction for scanned document image is to estimate the skew angle. Traditional methods mostly based on its linear check, such as Hough transformation and so on. However, it is often affected by its texture structure or other noise. In this paper, a fast and robust skew estimation method is proposed based on low-rank matrix decomposition, which seeks an affine transformation that can be used to implement the correction. As the rank of a matrix is a natural measure of regularity and symmetry of images, a misaligned scanned document image is assumed to be correct when the rank of the texture extracted from the image itself is the minimum. Therefore, the skew correction problem can be considered as a matrix rank minimization problem. As experiment illustrated, our method works efficiently and robustly overcoming corruptions, such as lines, circles and so on.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2014.7009726</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2014 International Conference on Machine Learning and Cybernetics, 2014, Vol.2, p.883-887 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_7009726 |
source | IEEE Xplore All Conference Series |
subjects | Abstracts Approximation methods Hough Transformation Lead Low-Rank Matrix Decomposition Matching pursuit algorithms Matrix decomposition Robustness Scanned Document Images Skew Correction Transforms |
title | Fast and robust skew correction in scanned document images based on low-rank matrix decompositon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20and%20robust%20skew%20correction%20in%20scanned%20document%20images%20based%20on%20low-rank%20matrix%20decompositon&rft.btitle=2014%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Heng-You%20Wang&rft.date=2014-07&rft.volume=2&rft.spage=883&rft.epage=887&rft.pages=883-887&rft.issn=2160-133X&rft.isbn=1479942162&rft.isbn_list=9781479942169&rft_id=info:doi/10.1109/ICMLC.2014.7009726&rft.eisbn=9781479942152&rft.eisbn_list=1479942170&rft.eisbn_list=9781479942176&rft.eisbn_list=1479942154&rft_dat=%3Cieee_CHZPO%3E7009726%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7dfbf4f6f0bab640ae4f816dad471a9ef707b15d6549ea3d0450fe9cc1e911483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7009726&rfr_iscdi=true |