Loading…

Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units

We survey evidence - orthographic distributional phonological and psycholinguistic - in favor of a model of Arabic speech sounds based on the CV unit and extensive use of the silent sukuun vowel. We then construct a small-vocabulary multi-speaker CV HMM similar to the phonemic HMMs based on tied tri...

Full description

Saved in:
Bibliographic Details
Main Authors: Ingleby, Michael, Baothman, Fatmah
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 259
container_issue
container_start_page 254
container_title
container_volume
creator Ingleby, Michael
Baothman, Fatmah
description We survey evidence - orthographic distributional phonological and psycholinguistic - in favor of a model of Arabic speech sounds based on the CV unit and extensive use of the silent sukuun vowel. We then construct a small-vocabulary multi-speaker CV HMM similar to the phonemic HMMs based on tied triphones that are widely used in speech recognizers for English and other European languages. Using experimental measures of recognition accuracy and trainability, we demonstrate that the CV type of model outperforms a standard tied triphone recognizer for Arabic speech, using Cohen's kappa ration for statistical comparison. Finally we argue that models based on CV units may also lead to better stemmers, spell-checkers and other natural language processing tools for Arabic.
doi_str_mv 10.1109/CIST.2014.7016628
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7016628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7016628</ieee_id><sourcerecordid>7016628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3fc3d5825358e5dfce005e800f0b385ac6f2c486cd544cf60eaf1a7a8172f7b73</originalsourceid><addsrcrecordid>eNo1j81Kw0AURkdQsNQ8gLiZF0i885e5syyh2kKDi1ZxVyaTGRmbJiXTCn17odbV4TuLDw4hjwwKxsA8V8v1puDAZKGBlSXHG5IZjUxqY5TRht-SCRdc5wzV5z3JUvoGAMEQjRQTMl-fu8420dHajrvhh-6H1neJDoHOxotf1PVlpsOw8_2_PaXYf9Hqg576eEwP5C7YLvnsyil5f5lvqkW-entdVrNVHplWx1wEJ1qFXAmFXrXBeQDlESBAI1BZVwbuJJauVVK6UIK3gVltkWkedKPFlDz9_Ubv_fYwxr0dz9truPgFvDZLSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units</title><source>IEEE Xplore All Conference Series</source><creator>Ingleby, Michael ; Baothman, Fatmah</creator><creatorcontrib>Ingleby, Michael ; Baothman, Fatmah</creatorcontrib><description>We survey evidence - orthographic distributional phonological and psycholinguistic - in favor of a model of Arabic speech sounds based on the CV unit and extensive use of the silent sukuun vowel. We then construct a small-vocabulary multi-speaker CV HMM similar to the phonemic HMMs based on tied triphones that are widely used in speech recognizers for English and other European languages. Using experimental measures of recognition accuracy and trainability, we demonstrate that the CV type of model outperforms a standard tied triphone recognizer for Arabic speech, using Cohen's kappa ration for statistical comparison. Finally we argue that models based on CV units may also lead to better stemmers, spell-checkers and other natural language processing tools for Arabic.</description><identifier>ISSN: 2327-185X</identifier><identifier>EISBN: 9781479959792</identifier><identifier>EISBN: 1479959782</identifier><identifier>EISBN: 1479959790</identifier><identifier>EISBN: 9781479959785</identifier><identifier>DOI: 10.1109/CIST.2014.7016628</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Hidden Markov models ; kappa ratio ; Natural language processing ; Speech ; Speech recognition ; speech recognizers ; syllabic components ; testing speaker independence ; tied triphone models ; Training ; Vocabulary</subject><ispartof>2014 Third IEEE International Colloquium in Information Science and Technology (CIST), 2014, p.254-259</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7016628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7016628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ingleby, Michael</creatorcontrib><creatorcontrib>Baothman, Fatmah</creatorcontrib><title>Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units</title><title>2014 Third IEEE International Colloquium in Information Science and Technology (CIST)</title><addtitle>CIST</addtitle><description>We survey evidence - orthographic distributional phonological and psycholinguistic - in favor of a model of Arabic speech sounds based on the CV unit and extensive use of the silent sukuun vowel. We then construct a small-vocabulary multi-speaker CV HMM similar to the phonemic HMMs based on tied triphones that are widely used in speech recognizers for English and other European languages. Using experimental measures of recognition accuracy and trainability, we demonstrate that the CV type of model outperforms a standard tied triphone recognizer for Arabic speech, using Cohen's kappa ration for statistical comparison. Finally we argue that models based on CV units may also lead to better stemmers, spell-checkers and other natural language processing tools for Arabic.</description><subject>Accuracy</subject><subject>Hidden Markov models</subject><subject>kappa ratio</subject><subject>Natural language processing</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>speech recognizers</subject><subject>syllabic components</subject><subject>testing speaker independence</subject><subject>tied triphone models</subject><subject>Training</subject><subject>Vocabulary</subject><issn>2327-185X</issn><isbn>9781479959792</isbn><isbn>1479959782</isbn><isbn>1479959790</isbn><isbn>9781479959785</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AURkdQsNQ8gLiZF0i885e5syyh2kKDi1ZxVyaTGRmbJiXTCn17odbV4TuLDw4hjwwKxsA8V8v1puDAZKGBlSXHG5IZjUxqY5TRht-SCRdc5wzV5z3JUvoGAMEQjRQTMl-fu8420dHajrvhh-6H1neJDoHOxotf1PVlpsOw8_2_PaXYf9Hqg576eEwP5C7YLvnsyil5f5lvqkW-entdVrNVHplWx1wEJ1qFXAmFXrXBeQDlESBAI1BZVwbuJJauVVK6UIK3gVltkWkedKPFlDz9_Ubv_fYwxr0dz9truPgFvDZLSw</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Ingleby, Michael</creator><creator>Baothman, Fatmah</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201410</creationdate><title>Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units</title><author>Ingleby, Michael ; Baothman, Fatmah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3fc3d5825358e5dfce005e800f0b385ac6f2c486cd544cf60eaf1a7a8172f7b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Hidden Markov models</topic><topic>kappa ratio</topic><topic>Natural language processing</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>speech recognizers</topic><topic>syllabic components</topic><topic>testing speaker independence</topic><topic>tied triphone models</topic><topic>Training</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Ingleby, Michael</creatorcontrib><creatorcontrib>Baothman, Fatmah</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ingleby, Michael</au><au>Baothman, Fatmah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units</atitle><btitle>2014 Third IEEE International Colloquium in Information Science and Technology (CIST)</btitle><stitle>CIST</stitle><date>2014-10</date><risdate>2014</risdate><spage>254</spage><epage>259</epage><pages>254-259</pages><issn>2327-185X</issn><eisbn>9781479959792</eisbn><eisbn>1479959782</eisbn><eisbn>1479959790</eisbn><eisbn>9781479959785</eisbn><abstract>We survey evidence - orthographic distributional phonological and psycholinguistic - in favor of a model of Arabic speech sounds based on the CV unit and extensive use of the silent sukuun vowel. We then construct a small-vocabulary multi-speaker CV HMM similar to the phonemic HMMs based on tied triphones that are widely used in speech recognizers for English and other European languages. Using experimental measures of recognition accuracy and trainability, we demonstrate that the CV type of model outperforms a standard tied triphone recognizer for Arabic speech, using Cohen's kappa ration for statistical comparison. Finally we argue that models based on CV units may also lead to better stemmers, spell-checkers and other natural language processing tools for Arabic.</abstract><pub>IEEE</pub><doi>10.1109/CIST.2014.7016628</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-185X
ispartof 2014 Third IEEE International Colloquium in Information Science and Technology (CIST), 2014, p.254-259
issn 2327-185X
language eng
recordid cdi_ieee_primary_7016628
source IEEE Xplore All Conference Series
subjects Accuracy
Hidden Markov models
kappa ratio
Natural language processing
Speech
Speech recognition
speech recognizers
syllabic components
testing speaker independence
tied triphone models
Training
Vocabulary
title Syllabic Markov models of Arabic HMMs of spoken Arabic using CV units
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Syllabic%20Markov%20models%20of%20Arabic%20HMMs%20of%20spoken%20Arabic%20using%20CV%20units&rft.btitle=2014%20Third%20IEEE%20International%20Colloquium%20in%20Information%20Science%20and%20Technology%20(CIST)&rft.au=Ingleby,%20Michael&rft.date=2014-10&rft.spage=254&rft.epage=259&rft.pages=254-259&rft.issn=2327-185X&rft_id=info:doi/10.1109/CIST.2014.7016628&rft.eisbn=9781479959792&rft.eisbn_list=1479959782&rft.eisbn_list=1479959790&rft.eisbn_list=9781479959785&rft_dat=%3Cieee_CHZPO%3E7016628%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3fc3d5825358e5dfce005e800f0b385ac6f2c486cd544cf60eaf1a7a8172f7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7016628&rfr_iscdi=true