Loading…

A multilayer neural network for image demosaicking

The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilay...

Full description

Saved in:
Bibliographic Details
Main Author: Yi-Qing Wang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3
cites
container_end_page 1856
container_issue
container_start_page 1852
container_title
container_volume
creator Yi-Qing Wang
description The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.
doi_str_mv 10.1109/ICIP.2014.7025371
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7025371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7025371</ieee_id><sourcerecordid>7025371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdRMNY-gLjJCyTOnTvjzF2W4E-g0C50XSaTmxKbNDJJkb69Abs6q_NxPiEeQeYAkp7LotzmSoLOrVQGLVyJJVkH2hIZa0Bfi0Shg8wZTTciAaNUpp2Td-J-HL-lnF2ERKhV2p-6qe38mWN65FP03Yzpd4iHtBli2vZ-z2nN_TD6Nhza4_5B3Da-G3l54UJ8vb1-Fh_ZevNeFqt1FhThlAFq1potq0CV8TZYhAC1DwykECtZhwpeDLLy2hHNbSCdqch5akJDFS7E0_9uy8y7nziXxPPuchf_AEkJRkk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multilayer neural network for image demosaicking</title><source>IEEE Xplore All Conference Series</source><creator>Yi-Qing Wang</creator><creatorcontrib>Yi-Qing Wang</creatorcontrib><description>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</description><identifier>ISSN: 1522-4880</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781479957514</identifier><identifier>EISBN: 1479957518</identifier><identifier>DOI: 10.1109/ICIP.2014.7025371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; distributional invariance ; Image color analysis ; image demosaicking ; Interpolation ; multilayer neural network ; Noise reduction ; Training</subject><ispartof>2014 IEEE International Conference on Image Processing (ICIP), 2014, p.1852-1856</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7025371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7025371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi-Qing Wang</creatorcontrib><title>A multilayer neural network for image demosaicking</title><title>2014 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</description><subject>Artificial neural networks</subject><subject>distributional invariance</subject><subject>Image color analysis</subject><subject>image demosaicking</subject><subject>Interpolation</subject><subject>multilayer neural network</subject><subject>Noise reduction</subject><subject>Training</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781479957514</isbn><isbn>1479957518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdRMNY-gLjJCyTOnTvjzF2W4E-g0C50XSaTmxKbNDJJkb69Abs6q_NxPiEeQeYAkp7LotzmSoLOrVQGLVyJJVkH2hIZa0Bfi0Shg8wZTTciAaNUpp2Td-J-HL-lnF2ERKhV2p-6qe38mWN65FP03Yzpd4iHtBli2vZ-z2nN_TD6Nhza4_5B3Da-G3l54UJ8vb1-Fh_ZevNeFqt1FhThlAFq1potq0CV8TZYhAC1DwykECtZhwpeDLLy2hHNbSCdqch5akJDFS7E0_9uy8y7nziXxPPuchf_AEkJRkk</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Yi-Qing Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201410</creationdate><title>A multilayer neural network for image demosaicking</title><author>Yi-Qing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>distributional invariance</topic><topic>Image color analysis</topic><topic>image demosaicking</topic><topic>Interpolation</topic><topic>multilayer neural network</topic><topic>Noise reduction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yi-Qing Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi-Qing Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multilayer neural network for image demosaicking</atitle><btitle>2014 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2014-10</date><risdate>2014</risdate><spage>1852</spage><epage>1856</epage><pages>1852-1856</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><eisbn>9781479957514</eisbn><eisbn>1479957518</eisbn><abstract>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2014.7025371</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2014 IEEE International Conference on Image Processing (ICIP), 2014, p.1852-1856
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_7025371
source IEEE Xplore All Conference Series
subjects Artificial neural networks
distributional invariance
Image color analysis
image demosaicking
Interpolation
multilayer neural network
Noise reduction
Training
title A multilayer neural network for image demosaicking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multilayer%20neural%20network%20for%20image%20demosaicking&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Yi-Qing%20Wang&rft.date=2014-10&rft.spage=1852&rft.epage=1856&rft.pages=1852-1856&rft.issn=1522-4880&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2014.7025371&rft.eisbn=9781479957514&rft.eisbn_list=1479957518&rft_dat=%3Cieee_CHZPO%3E7025371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7025371&rfr_iscdi=true