Loading…
A multilayer neural network for image demosaicking
The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilay...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3 |
---|---|
cites | |
container_end_page | 1856 |
container_issue | |
container_start_page | 1852 |
container_title | |
container_volume | |
creator | Yi-Qing Wang |
description | The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/. |
doi_str_mv | 10.1109/ICIP.2014.7025371 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7025371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7025371</ieee_id><sourcerecordid>7025371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdRMNY-gLjJCyTOnTvjzF2W4E-g0C50XSaTmxKbNDJJkb69Abs6q_NxPiEeQeYAkp7LotzmSoLOrVQGLVyJJVkH2hIZa0Bfi0Shg8wZTTciAaNUpp2Td-J-HL-lnF2ERKhV2p-6qe38mWN65FP03Yzpd4iHtBli2vZ-z2nN_TD6Nhza4_5B3Da-G3l54UJ8vb1-Fh_ZevNeFqt1FhThlAFq1potq0CV8TZYhAC1DwykECtZhwpeDLLy2hHNbSCdqch5akJDFS7E0_9uy8y7nziXxPPuchf_AEkJRkk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multilayer neural network for image demosaicking</title><source>IEEE Xplore All Conference Series</source><creator>Yi-Qing Wang</creator><creatorcontrib>Yi-Qing Wang</creatorcontrib><description>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</description><identifier>ISSN: 1522-4880</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781479957514</identifier><identifier>EISBN: 1479957518</identifier><identifier>DOI: 10.1109/ICIP.2014.7025371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; distributional invariance ; Image color analysis ; image demosaicking ; Interpolation ; multilayer neural network ; Noise reduction ; Training</subject><ispartof>2014 IEEE International Conference on Image Processing (ICIP), 2014, p.1852-1856</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7025371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7025371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yi-Qing Wang</creatorcontrib><title>A multilayer neural network for image demosaicking</title><title>2014 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</description><subject>Artificial neural networks</subject><subject>distributional invariance</subject><subject>Image color analysis</subject><subject>image demosaicking</subject><subject>Interpolation</subject><subject>multilayer neural network</subject><subject>Noise reduction</subject><subject>Training</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781479957514</isbn><isbn>1479957518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdRMNY-gLjJCyTOnTvjzF2W4E-g0C50XSaTmxKbNDJJkb69Abs6q_NxPiEeQeYAkp7LotzmSoLOrVQGLVyJJVkH2hIZa0Bfi0Shg8wZTTciAaNUpp2Td-J-HL-lnF2ERKhV2p-6qe38mWN65FP03Yzpd4iHtBli2vZ-z2nN_TD6Nhza4_5B3Da-G3l54UJ8vb1-Fh_ZevNeFqt1FhThlAFq1potq0CV8TZYhAC1DwykECtZhwpeDLLy2hHNbSCdqch5akJDFS7E0_9uy8y7nziXxPPuchf_AEkJRkk</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Yi-Qing Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201410</creationdate><title>A multilayer neural network for image demosaicking</title><author>Yi-Qing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial neural networks</topic><topic>distributional invariance</topic><topic>Image color analysis</topic><topic>image demosaicking</topic><topic>Interpolation</topic><topic>multilayer neural network</topic><topic>Noise reduction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yi-Qing Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi-Qing Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multilayer neural network for image demosaicking</atitle><btitle>2014 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2014-10</date><risdate>2014</risdate><spage>1852</spage><epage>1856</epage><pages>1852-1856</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><eisbn>9781479957514</eisbn><eisbn>1479957518</eisbn><abstract>The recent revival of interest in artificial neural networks has been fueled by their successful applications in various image processing and computer vision tasks. In this work, we make use of the rotational invariance of the natural image patch distribution and propose a 4 × 4 patch based multilayer neural network for image demosaicking. We show that it does surprisingly well compared to state-of-the-art approaches requiring much larger neighborhoods. An online demo can be found at http://dev.ipol.im/~yiqing/ipol_demo/neuaick/.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2014.7025371</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2014 IEEE International Conference on Image Processing (ICIP), 2014, p.1852-1856 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_7025371 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks distributional invariance Image color analysis image demosaicking Interpolation multilayer neural network Noise reduction Training |
title | A multilayer neural network for image demosaicking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multilayer%20neural%20network%20for%20image%20demosaicking&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Yi-Qing%20Wang&rft.date=2014-10&rft.spage=1852&rft.epage=1856&rft.pages=1852-1856&rft.issn=1522-4880&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2014.7025371&rft.eisbn=9781479957514&rft.eisbn_list=1479957518&rft_dat=%3Cieee_CHZPO%3E7025371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-134e44e7e2c9b5a7c731c1dace19233b0dcb1653e2a48994881085b98a9fcf9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7025371&rfr_iscdi=true |