Loading…

3D object classification in baggage computed tomography imagery using randomised clustering forests

We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques...

Full description

Saved in:
Bibliographic Details
Main Authors: Mouton, Andre, Breckon, Toby P., Flitton, Greg T., Megherbi, Najla
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3
cites
container_end_page 5206
container_issue
container_start_page 5202
container_title
container_volume
creator Mouton, Andre
Breckon, Toby P.
Flitton, Greg T.
Megherbi, Najla
description We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.
doi_str_mv 10.1109/ICIP.2014.7026053
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7026053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7026053</ieee_id><sourcerecordid>7026053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</originalsourceid><addsrcrecordid>eNotUMlOwzAUNAgkQukHIC7-gQQ_L7F9RGWLVAkOcK4cxwmumriynUP_niB6Gmk2jQaheyAVANGPzab5rCgBXklCayLYBVprqYBLrYUUwC9RQZmCUgmur1ABgtKSK0Vu0G1Ke0KWLIMCWfaMQ7t3NmN7MCn53luTfZiwn3BrhsEMDtswHufsOpzDGIZojj8n7MdFiSc8Jz8NOJqpC6NPi8ce5pRd_GP7EF3K6Q5d9-aQ3PqMK_T9-vK1eS-3H2_N5mlbWsbqXIq-VbrmDjolqaPGtoQpURPeGljWSgYgbW2ZZm0PYGraW01kt9xhhFZdx1bo4b_XO-d2x7hMjKfd-R_2C0q7WI8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><source>IEEE Xplore All Conference Series</source><creator>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</creator><creatorcontrib>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</creatorcontrib><description>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</description><identifier>ISSN: 1522-4880</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781479957514</identifier><identifier>EISBN: 1479957518</identifier><identifier>DOI: 10.1109/ICIP.2014.7026053</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bag-of-Words ; baggage CT ; Classification ; Computed tomography ; Computer vision ; Conferences ; Random forests ; Support vector machines ; Three-dimensional displays ; Vegetation ; Visualization</subject><ispartof>2014 IEEE International Conference on Image Processing (ICIP), 2015, p.5202-5206</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7026053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7026053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mouton, Andre</creatorcontrib><creatorcontrib>Breckon, Toby P.</creatorcontrib><creatorcontrib>Flitton, Greg T.</creatorcontrib><creatorcontrib>Megherbi, Najla</creatorcontrib><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><title>2014 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</description><subject>Bag-of-Words</subject><subject>baggage CT</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Random forests</subject><subject>Support vector machines</subject><subject>Three-dimensional displays</subject><subject>Vegetation</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781479957514</isbn><isbn>1479957518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlOwzAUNAgkQukHIC7-gQQ_L7F9RGWLVAkOcK4cxwmumriynUP_niB6Gmk2jQaheyAVANGPzab5rCgBXklCayLYBVprqYBLrYUUwC9RQZmCUgmur1ABgtKSK0Vu0G1Ke0KWLIMCWfaMQ7t3NmN7MCn53luTfZiwn3BrhsEMDtswHufsOpzDGIZojj8n7MdFiSc8Jz8NOJqpC6NPi8ce5pRd_GP7EF3K6Q5d9-aQ3PqMK_T9-vK1eS-3H2_N5mlbWsbqXIq-VbrmDjolqaPGtoQpURPeGljWSgYgbW2ZZm0PYGraW01kt9xhhFZdx1bo4b_XO-d2x7hMjKfd-R_2C0q7WI8</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Mouton, Andre</creator><creator>Breckon, Toby P.</creator><creator>Flitton, Greg T.</creator><creator>Megherbi, Najla</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150128</creationdate><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><author>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bag-of-Words</topic><topic>baggage CT</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Random forests</topic><topic>Support vector machines</topic><topic>Three-dimensional displays</topic><topic>Vegetation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mouton, Andre</creatorcontrib><creatorcontrib>Breckon, Toby P.</creatorcontrib><creatorcontrib>Flitton, Greg T.</creatorcontrib><creatorcontrib>Megherbi, Najla</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mouton, Andre</au><au>Breckon, Toby P.</au><au>Flitton, Greg T.</au><au>Megherbi, Najla</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D object classification in baggage computed tomography imagery using randomised clustering forests</atitle><btitle>2014 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2015-01-28</date><risdate>2015</risdate><spage>5202</spage><epage>5206</epage><pages>5202-5206</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><eisbn>9781479957514</eisbn><eisbn>1479957518</eisbn><abstract>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2014.7026053</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2014 IEEE International Conference on Image Processing (ICIP), 2015, p.5202-5206
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_7026053
source IEEE Xplore All Conference Series
subjects Bag-of-Words
baggage CT
Classification
Computed tomography
Computer vision
Conferences
Random forests
Support vector machines
Three-dimensional displays
Vegetation
Visualization
title 3D object classification in baggage computed tomography imagery using randomised clustering forests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20object%20classification%20in%20baggage%20computed%20tomography%20imagery%20using%20randomised%20clustering%20forests&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Mouton,%20Andre&rft.date=2015-01-28&rft.spage=5202&rft.epage=5206&rft.pages=5202-5206&rft.issn=1522-4880&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2014.7026053&rft.eisbn=9781479957514&rft.eisbn_list=1479957518&rft_dat=%3Cieee_CHZPO%3E7026053%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7026053&rfr_iscdi=true