Loading…
3D object classification in baggage computed tomography imagery using randomised clustering forests
We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3 |
---|---|
cites | |
container_end_page | 5206 |
container_issue | |
container_start_page | 5202 |
container_title | |
container_volume | |
creator | Mouton, Andre Breckon, Toby P. Flitton, Greg T. Megherbi, Najla |
description | We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings. |
doi_str_mv | 10.1109/ICIP.2014.7026053 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7026053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7026053</ieee_id><sourcerecordid>7026053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</originalsourceid><addsrcrecordid>eNotUMlOwzAUNAgkQukHIC7-gQQ_L7F9RGWLVAkOcK4cxwmumriynUP_niB6Gmk2jQaheyAVANGPzab5rCgBXklCayLYBVprqYBLrYUUwC9RQZmCUgmur1ABgtKSK0Vu0G1Ke0KWLIMCWfaMQ7t3NmN7MCn53luTfZiwn3BrhsEMDtswHufsOpzDGIZojj8n7MdFiSc8Jz8NOJqpC6NPi8ce5pRd_GP7EF3K6Q5d9-aQ3PqMK_T9-vK1eS-3H2_N5mlbWsbqXIq-VbrmDjolqaPGtoQpURPeGljWSgYgbW2ZZm0PYGraW01kt9xhhFZdx1bo4b_XO-d2x7hMjKfd-R_2C0q7WI8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><source>IEEE Xplore All Conference Series</source><creator>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</creator><creatorcontrib>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</creatorcontrib><description>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</description><identifier>ISSN: 1522-4880</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781479957514</identifier><identifier>EISBN: 1479957518</identifier><identifier>DOI: 10.1109/ICIP.2014.7026053</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bag-of-Words ; baggage CT ; Classification ; Computed tomography ; Computer vision ; Conferences ; Random forests ; Support vector machines ; Three-dimensional displays ; Vegetation ; Visualization</subject><ispartof>2014 IEEE International Conference on Image Processing (ICIP), 2015, p.5202-5206</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7026053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7026053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mouton, Andre</creatorcontrib><creatorcontrib>Breckon, Toby P.</creatorcontrib><creatorcontrib>Flitton, Greg T.</creatorcontrib><creatorcontrib>Megherbi, Najla</creatorcontrib><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><title>2014 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</description><subject>Bag-of-Words</subject><subject>baggage CT</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Random forests</subject><subject>Support vector machines</subject><subject>Three-dimensional displays</subject><subject>Vegetation</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781479957514</isbn><isbn>1479957518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlOwzAUNAgkQukHIC7-gQQ_L7F9RGWLVAkOcK4cxwmumriynUP_niB6Gmk2jQaheyAVANGPzab5rCgBXklCayLYBVprqYBLrYUUwC9RQZmCUgmur1ABgtKSK0Vu0G1Ke0KWLIMCWfaMQ7t3NmN7MCn53luTfZiwn3BrhsEMDtswHufsOpzDGIZojj8n7MdFiSc8Jz8NOJqpC6NPi8ce5pRd_GP7EF3K6Q5d9-aQ3PqMK_T9-vK1eS-3H2_N5mlbWsbqXIq-VbrmDjolqaPGtoQpURPeGljWSgYgbW2ZZm0PYGraW01kt9xhhFZdx1bo4b_XO-d2x7hMjKfd-R_2C0q7WI8</recordid><startdate>20150128</startdate><enddate>20150128</enddate><creator>Mouton, Andre</creator><creator>Breckon, Toby P.</creator><creator>Flitton, Greg T.</creator><creator>Megherbi, Najla</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150128</creationdate><title>3D object classification in baggage computed tomography imagery using randomised clustering forests</title><author>Mouton, Andre ; Breckon, Toby P. ; Flitton, Greg T. ; Megherbi, Najla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bag-of-Words</topic><topic>baggage CT</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Random forests</topic><topic>Support vector machines</topic><topic>Three-dimensional displays</topic><topic>Vegetation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mouton, Andre</creatorcontrib><creatorcontrib>Breckon, Toby P.</creatorcontrib><creatorcontrib>Flitton, Greg T.</creatorcontrib><creatorcontrib>Megherbi, Najla</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mouton, Andre</au><au>Breckon, Toby P.</au><au>Flitton, Greg T.</au><au>Megherbi, Najla</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D object classification in baggage computed tomography imagery using randomised clustering forests</atitle><btitle>2014 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2015-01-28</date><risdate>2015</risdate><spage>5202</spage><epage>5206</epage><pages>5202-5206</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><eisbn>9781479957514</eisbn><eisbn>1479957518</eisbn><abstract>We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests, a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2014.7026053</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2014 IEEE International Conference on Image Processing (ICIP), 2015, p.5202-5206 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_7026053 |
source | IEEE Xplore All Conference Series |
subjects | Bag-of-Words baggage CT Classification Computed tomography Computer vision Conferences Random forests Support vector machines Three-dimensional displays Vegetation Visualization |
title | 3D object classification in baggage computed tomography imagery using randomised clustering forests |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20object%20classification%20in%20baggage%20computed%20tomography%20imagery%20using%20randomised%20clustering%20forests&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Mouton,%20Andre&rft.date=2015-01-28&rft.spage=5202&rft.epage=5206&rft.pages=5202-5206&rft.issn=1522-4880&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2014.7026053&rft.eisbn=9781479957514&rft.eisbn_list=1479957518&rft_dat=%3Cieee_CHZPO%3E7026053%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-5fb8964e1d872e2acb0385604ba120173117c6c393bf11a62fc907d110a598dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7026053&rfr_iscdi=true |