Loading…

SAETA: A Smart Coaching Assistant for Professional Volleyball Training

This paper introduces a smart assistant for professional volleyball training based on machine-learning techniques (SAETA). SAETA addresses two main aspects of elite sports coaching: 1) technical-tactical effort control, which aims at controlling exercise effort and fatigue levels and 2) exercise qua...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2015-08, Vol.45 (8), p.1138-1150
Main Authors: Vales-Alonso, Javier, Chaves-Dieguez, David, Lopez-Matencio, Pablo, Alcaraz, Juan J., Parrado-Garcia, Francisco J., Gonzalez-Castano, F. Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a smart assistant for professional volleyball training based on machine-learning techniques (SAETA). SAETA addresses two main aspects of elite sports coaching: 1) technical-tactical effort control, which aims at controlling exercise effort and fatigue levels and 2) exercise quality training, which complements the former by analyzing the execution of player movements. SAETA relies on a sensing infrastructure that monitors both players and their environment, and produces real-time data that is analyzed by different modules of a decision engine. Technical-tactical effort control is based on a dynamic programming model, which selects the best activity and rest durations in interval training, with the goal of maximizing effort while preventing fatigue. Exercise quality control consists of two stages. In the first stage, movements are detected by means of a k-nearest neighbors classifier and in the second stage, movement intensity is classified according to recent statistical data from the player being analyzed. These analyses are reported to coaches and players in real-time. SAETA has been developed in close collaboration with the Universidad Católica San Antonio de Murcia volleyball team, which competes in the Spanish women's premier league. Data gathered during training sessions has provided a knowledge base for the algorithms developed, and has been used for the validation of results.
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2015.2391258