Loading…
Depth estimation for hand-held light field cameras under low light conditions
Depth estimation is one of the new functions provided by hand-held light field cameras. However, the quality of depth estimation is very sensitive to noise, which is especially a problem for scenes under low light conditions. In this paper, we propose a depth estimation flow for light field data, wh...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Min-Hung Chen Ching-Fan Chiang Yi-Chang Lu |
description | Depth estimation is one of the new functions provided by hand-held light field cameras. However, the quality of depth estimation is very sensitive to noise, which is especially a problem for scenes under low light conditions. In this paper, we propose a depth estimation flow for light field data, which can be fully-automated and no noise characteristics are required a priori. The results of Root Mean Square Error (RMSE) and Percentage of Bad Matching Pixels (PBM) show the effectiveness of this iterative correlation-based depth estimation flow even with basic filtering functions. |
doi_str_mv | 10.1109/IC3D.2014.7032578 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7032578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7032578</ieee_id><sourcerecordid>7032578</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d51312a1445adfef7980b63fa757edb2dd43569cfd4a545144a4f1bc53ba59363</originalsourceid><addsrcrecordid>eNo9UMtKxDAUjaLgMPYDxE1-oDU3j95mKR0fAyNudD2kTWIjnXZIKuLf28Hi6hw4Dw6HkBtgBQDTd9tabArOQBbIBFdYnZFMYwUSta4YF_qcrLhAnQNW7OKfI78iWUqfjDHQilUoV-Rl445TR12awsFMYRyoHyPtzGDzzvWW9uGjm6gPJ96ag4sm0a_Bukj78XtR23Gw4ZRN1-TSmz65bME1eX98eKuf893r07a-3-UBUE25VSCAG5BSGeudx3l1UwpvUKGzDbdWClXq1ltplFSzz0gPTatEY5QWpViT27_e4JzbH-O8Pf7slzPELzfSUO8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Depth estimation for hand-held light field cameras under low light conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Min-Hung Chen ; Ching-Fan Chiang ; Yi-Chang Lu</creator><creatorcontrib>Min-Hung Chen ; Ching-Fan Chiang ; Yi-Chang Lu</creatorcontrib><description>Depth estimation is one of the new functions provided by hand-held light field cameras. However, the quality of depth estimation is very sensitive to noise, which is especially a problem for scenes under low light conditions. In this paper, we propose a depth estimation flow for light field data, which can be fully-automated and no noise characteristics are required a priori. The results of Root Mean Square Error (RMSE) and Percentage of Bad Matching Pixels (PBM) show the effectiveness of this iterative correlation-based depth estimation flow even with basic filtering functions.</description><identifier>ISSN: 2379-1772</identifier><identifier>EISSN: 2379-1780</identifier><identifier>EISBN: 9781479980239</identifier><identifier>EISBN: 1479980234</identifier><identifier>DOI: 10.1109/IC3D.2014.7032578</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Cameras ; Correlation ; denoising ; Depth estimation ; Estimation ; Iterative methods ; light field ; Noise ; Noise reduction</subject><ispartof>2014 International Conference on 3D Imaging (IC3D), 2014, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7032578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7032578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Min-Hung Chen</creatorcontrib><creatorcontrib>Ching-Fan Chiang</creatorcontrib><creatorcontrib>Yi-Chang Lu</creatorcontrib><title>Depth estimation for hand-held light field cameras under low light conditions</title><title>2014 International Conference on 3D Imaging (IC3D)</title><addtitle>IC3D</addtitle><description>Depth estimation is one of the new functions provided by hand-held light field cameras. However, the quality of depth estimation is very sensitive to noise, which is especially a problem for scenes under low light conditions. In this paper, we propose a depth estimation flow for light field data, which can be fully-automated and no noise characteristics are required a priori. The results of Root Mean Square Error (RMSE) and Percentage of Bad Matching Pixels (PBM) show the effectiveness of this iterative correlation-based depth estimation flow even with basic filtering functions.</description><subject>Arrays</subject><subject>Cameras</subject><subject>Correlation</subject><subject>denoising</subject><subject>Depth estimation</subject><subject>Estimation</subject><subject>Iterative methods</subject><subject>light field</subject><subject>Noise</subject><subject>Noise reduction</subject><issn>2379-1772</issn><issn>2379-1780</issn><isbn>9781479980239</isbn><isbn>1479980234</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtKxDAUjaLgMPYDxE1-oDU3j95mKR0fAyNudD2kTWIjnXZIKuLf28Hi6hw4Dw6HkBtgBQDTd9tabArOQBbIBFdYnZFMYwUSta4YF_qcrLhAnQNW7OKfI78iWUqfjDHQilUoV-Rl445TR12awsFMYRyoHyPtzGDzzvWW9uGjm6gPJ96ag4sm0a_Bukj78XtR23Gw4ZRN1-TSmz65bME1eX98eKuf893r07a-3-UBUE25VSCAG5BSGeudx3l1UwpvUKGzDbdWClXq1ltplFSzz0gPTatEY5QWpViT27_e4JzbH-O8Pf7slzPELzfSUO8</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Min-Hung Chen</creator><creator>Ching-Fan Chiang</creator><creator>Yi-Chang Lu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201412</creationdate><title>Depth estimation for hand-held light field cameras under low light conditions</title><author>Min-Hung Chen ; Ching-Fan Chiang ; Yi-Chang Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d51312a1445adfef7980b63fa757edb2dd43569cfd4a545144a4f1bc53ba59363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arrays</topic><topic>Cameras</topic><topic>Correlation</topic><topic>denoising</topic><topic>Depth estimation</topic><topic>Estimation</topic><topic>Iterative methods</topic><topic>light field</topic><topic>Noise</topic><topic>Noise reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Min-Hung Chen</creatorcontrib><creatorcontrib>Ching-Fan Chiang</creatorcontrib><creatorcontrib>Yi-Chang Lu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Min-Hung Chen</au><au>Ching-Fan Chiang</au><au>Yi-Chang Lu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Depth estimation for hand-held light field cameras under low light conditions</atitle><btitle>2014 International Conference on 3D Imaging (IC3D)</btitle><stitle>IC3D</stitle><date>2014-12</date><risdate>2014</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2379-1772</issn><eissn>2379-1780</eissn><eisbn>9781479980239</eisbn><eisbn>1479980234</eisbn><abstract>Depth estimation is one of the new functions provided by hand-held light field cameras. However, the quality of depth estimation is very sensitive to noise, which is especially a problem for scenes under low light conditions. In this paper, we propose a depth estimation flow for light field data, which can be fully-automated and no noise characteristics are required a priori. The results of Root Mean Square Error (RMSE) and Percentage of Bad Matching Pixels (PBM) show the effectiveness of this iterative correlation-based depth estimation flow even with basic filtering functions.</abstract><pub>IEEE</pub><doi>10.1109/IC3D.2014.7032578</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-1772 |
ispartof | 2014 International Conference on 3D Imaging (IC3D), 2014, p.1-4 |
issn | 2379-1772 2379-1780 |
language | eng |
recordid | cdi_ieee_primary_7032578 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Cameras Correlation denoising Depth estimation Estimation Iterative methods light field Noise Noise reduction |
title | Depth estimation for hand-held light field cameras under low light conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Depth%20estimation%20for%20hand-held%20light%20field%20cameras%20under%20low%20light%20conditions&rft.btitle=2014%20International%20Conference%20on%203D%20Imaging%20(IC3D)&rft.au=Min-Hung%20Chen&rft.date=2014-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2379-1772&rft.eissn=2379-1780&rft_id=info:doi/10.1109/IC3D.2014.7032578&rft.eisbn=9781479980239&rft.eisbn_list=1479980234&rft_dat=%3Cieee_6IE%3E7032578%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d51312a1445adfef7980b63fa757edb2dd43569cfd4a545144a4f1bc53ba59363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7032578&rfr_iscdi=true |