Loading…

Robust Estimation of Non-Stationary Noise Power Spectrum for Speech Enhancement

We propose a novel method for noise power spectrum estimation in speech enhancement. This method called extended-DATE (E-DATE) extends the d-dimensional amplitude trimmed estimator (DATE), originally introduced for additive white gaussian noise power spectrum estimation in "Robust estimation of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2015-04, Vol.23 (4), p.670-682
Main Authors: Van-Khanh Mai, Pastor, Dominique, Aissa-El-Bey, Abdeldjalil, Le-Bidan, Raphael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a novel method for noise power spectrum estimation in speech enhancement. This method called extended-DATE (E-DATE) extends the d-dimensional amplitude trimmed estimator (DATE), originally introduced for additive white gaussian noise power spectrum estimation in "Robust estimation of noise standard deviation in presence of signals with unknown distributions and occurrences" (D. Pastor and F. Socheleau, IEEE Trans. Signal Processing, vol. 60, no. 4, pp. 1545-1555, Apr. 2012) to the more challenging scenario of non-stationary noise. The key idea is that, in each frequency bin and within a sufficiently short time period, the noise instantaneous power spectrum can be considered as approximately constant and estimated as the variance of a complex gaussian noise process possibly observed in the presence of the signal of interest. The proposed method relies on the fact that the Short-Time Fourier Transform (STFT) of noisy speech signals is sparse in the sense that transformed speech signals can be represented by a relatively small number of coefficients with large amplitudes in the time-frequency domain. The E-DATE estimator is robust in that it does not require prior information about the signal probability distribution except for the weak-sparseness property. In comparison to other state-of-the-art methods, the E-DATE is found to require the smallest number of parameters (only two). The performance of the proposed estimator has been evaluated in combination with noise reduction and compared to alternative methods. This evaluation involves objective as well as pseudo-subjective criteria.
ISSN:2329-9290
1558-7916
2329-9304
DOI:10.1109/TASLP.2015.2401426