Loading…

Recurrent Classifier Based on an Incremental Metacognitive-Based Scaffolding Algorithm

This paper outlines our proposal for a novel metacognitive-based scaffolding classifier, namely recurrent classifier (rClass). rClass is capable of emulating three fundamental pillars of human learning in terms of what-to-learn, how-to-learn, and when-to-learn. The cognitive constituent of rClass is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2015-12, Vol.23 (6), p.2048-2066
Main Authors: Pratama, Mahardhika, Anavatti, Sreenatha G., Jie Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper outlines our proposal for a novel metacognitive-based scaffolding classifier, namely recurrent classifier (rClass). rClass is capable of emulating three fundamental pillars of human learning in terms of what-to-learn, how-to-learn, and when-to-learn. The cognitive constituent of rClass is underpinned by a recurrent network based on a generalized version of the Takagi-Sugeno-Kang fuzzy system possessing a local feedback of the rule layer. The main basis of the what-to-learn component relies on the new active learning-based conflict measure. Meanwhile, the when-to-learn learning scenario makes use of the standard sample reserved strategy. The how-to-learn module actualizes the Schema and Scaffolding concepts of cognitive psychology. All learning principles are committed in the single-pass local learning modes and create a plug-and-play learning foundation minimizing additional pre- or post-training phases. The efficacy of rClass has been scrutinized by means of rigorous empirical studies, statistical tests, and benchmarks with state-of-the-art classifiers, which demonstrate the rClass potency in producing reliable classification rates, while retaining low complexity in terms of the rule base burden, computational load, and annotation effort.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2015.2402683