Loading…

Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics

Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patt...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2015-07, Vol.34 (7), p.1562-1575
Main Authors: McLeod, Kristin, Sermesant, Maxime, Beerbaum, Philipp, Pennec, Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73
cites cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73
container_end_page 1575
container_issue 7
container_start_page 1562
container_title IEEE transactions on medical imaging
container_volume 34
creator McLeod, Kristin
Sermesant, Maxime
Beerbaum, Philipp
Pennec, Xavier
description Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.
doi_str_mv 10.1109/TMI.2015.2405579
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7045543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7045543</ieee_id><sourcerecordid>1718952878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</originalsourceid><addsrcrecordid>eNqNks2P0zAQxS0EYrsLdyQkFIkLHFJsx5_HsnzsSq1YiYK4RU4yZr1y4mInSD3uf45DSw9c4GR55vfeeKyH0DOCl4Rg_Wa7uV5STPiSMsy51A_QgnCuSsrZt4dogalUJcaCnqHzlO4wJoxj_RidUS6x4Aov0P3nnRldKLfQ70I0vtjCkEIs3kEbciW53ByKYAtT3AS_N9a6AYpN-F3ehA58YTNuircwjhCL1WD8Prk0S27MeBt8-O7a7LsGOxZfYRijaydv8oT9YHrXpifokTU-wdPjeYG-fHi_vbwq158-Xl-u1mXLlB7LxjbUWKk4p4pRKUVLQRLJtMx3oTpitaAKeGs6qqQwSjWykQQz6BplWlldoNcH31vj6110vYn7OhhXX63W9VzDhGJeMfqTZPbVgd3F8GOCNNa9Sy14bwYIU6qJokIQJgT9NyqJ0vnNUv0HijWRkvMqoy__Qu_CFPPfZkpoxpjWfF4JH6g2hpQi2NNeBNdzQOockHoOSH0MSJa8OBpPTQ_dSfAnERl4fgAcAJzaEjPOWVX9Ao6qvQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694449957</pqid></control><display><type>article</type><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</creator><creatorcontrib>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</creatorcontrib><description>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2405579</identifier><identifier>PMID: 25706580</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alignment ; cardiac modelling ; Computer Science ; Dynamics ; Heart ; Mathematical analysis ; Mathematical models ; Medical Imaging ; motion tracking ; non-rigid image registration ; Patients ; Population ; population statistics ; Sociology ; spatio-temporal alignment ; Statistics ; Strain ; Temporal logic ; Tensile stress ; tensor decomposition ; Tensors ; tetralogy of Fallot ; Tracking ; Transformations</subject><ispartof>IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1562-1575</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</citedby><cites>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</cites><orcidid>0000-0002-6617-7664 ; 0000-0002-6256-8350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7045543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01205342$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>McLeod, Kristin</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Beerbaum, Philipp</creatorcontrib><creatorcontrib>Pennec, Xavier</creatorcontrib><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</description><subject>Alignment</subject><subject>cardiac modelling</subject><subject>Computer Science</subject><subject>Dynamics</subject><subject>Heart</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>motion tracking</subject><subject>non-rigid image registration</subject><subject>Patients</subject><subject>Population</subject><subject>population statistics</subject><subject>Sociology</subject><subject>spatio-temporal alignment</subject><subject>Statistics</subject><subject>Strain</subject><subject>Temporal logic</subject><subject>Tensile stress</subject><subject>tensor decomposition</subject><subject>Tensors</subject><subject>tetralogy of Fallot</subject><subject>Tracking</subject><subject>Transformations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks2P0zAQxS0EYrsLdyQkFIkLHFJsx5_HsnzsSq1YiYK4RU4yZr1y4mInSD3uf45DSw9c4GR55vfeeKyH0DOCl4Rg_Wa7uV5STPiSMsy51A_QgnCuSsrZt4dogalUJcaCnqHzlO4wJoxj_RidUS6x4Aov0P3nnRldKLfQ70I0vtjCkEIs3kEbciW53ByKYAtT3AS_N9a6AYpN-F3ehA58YTNuircwjhCL1WD8Prk0S27MeBt8-O7a7LsGOxZfYRijaydv8oT9YHrXpifokTU-wdPjeYG-fHi_vbwq158-Xl-u1mXLlB7LxjbUWKk4p4pRKUVLQRLJtMx3oTpitaAKeGs6qqQwSjWykQQz6BplWlldoNcH31vj6110vYn7OhhXX63W9VzDhGJeMfqTZPbVgd3F8GOCNNa9Sy14bwYIU6qJokIQJgT9NyqJ0vnNUv0HijWRkvMqoy__Qu_CFPPfZkpoxpjWfF4JH6g2hpQi2NNeBNdzQOockHoOSH0MSJa8OBpPTQ_dSfAnERl4fgAcAJzaEjPOWVX9Ao6qvQc</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>McLeod, Kristin</creator><creator>Sermesant, Maxime</creator><creator>Beerbaum, Philipp</creator><creator>Pennec, Xavier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6617-7664</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid></search><sort><creationdate>201507</creationdate><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><author>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alignment</topic><topic>cardiac modelling</topic><topic>Computer Science</topic><topic>Dynamics</topic><topic>Heart</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>motion tracking</topic><topic>non-rigid image registration</topic><topic>Patients</topic><topic>Population</topic><topic>population statistics</topic><topic>Sociology</topic><topic>spatio-temporal alignment</topic><topic>Statistics</topic><topic>Strain</topic><topic>Temporal logic</topic><topic>Tensile stress</topic><topic>tensor decomposition</topic><topic>Tensors</topic><topic>tetralogy of Fallot</topic><topic>Tracking</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>McLeod, Kristin</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Beerbaum, Philipp</creatorcontrib><creatorcontrib>Pennec, Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLeod, Kristin</au><au>Sermesant, Maxime</au><au>Beerbaum, Philipp</au><au>Pennec, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-07</date><risdate>2015</risdate><volume>34</volume><issue>7</issue><spage>1562</spage><epage>1575</epage><pages>1562-1575</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25706580</pmid><doi>10.1109/TMI.2015.2405579</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6617-7664</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1562-1575
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_7045543
source IEEE Electronic Library (IEL) Journals
subjects Alignment
cardiac modelling
Computer Science
Dynamics
Heart
Mathematical analysis
Mathematical models
Medical Imaging
motion tracking
non-rigid image registration
Patients
Population
population statistics
Sociology
spatio-temporal alignment
Statistics
Strain
Temporal logic
Tensile stress
tensor decomposition
Tensors
tetralogy of Fallot
Tracking
Transformations
title Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Tensor%20Decomposition%20of%20a%20Polyaffine%20Motion%20Model%20for%20a%20Better%20Analysis%20of%20Pathological%20Left%20Ventricular%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=McLeod,%20Kristin&rft.date=2015-07&rft.volume=34&rft.issue=7&rft.spage=1562&rft.epage=1575&rft.pages=1562-1575&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2405579&rft_dat=%3Cproquest_ieee_%3E1718952878%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694449957&rft_id=info:pmid/25706580&rft_ieee_id=7045543&rfr_iscdi=true