Loading…
Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics
Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patt...
Saved in:
Published in: | IEEE transactions on medical imaging 2015-07, Vol.34 (7), p.1562-1575 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73 |
container_end_page | 1575 |
container_issue | 7 |
container_start_page | 1562 |
container_title | IEEE transactions on medical imaging |
container_volume | 34 |
creator | McLeod, Kristin Sermesant, Maxime Beerbaum, Philipp Pennec, Xavier |
description | Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion. |
doi_str_mv | 10.1109/TMI.2015.2405579 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7045543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7045543</ieee_id><sourcerecordid>1718952878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</originalsourceid><addsrcrecordid>eNqNks2P0zAQxS0EYrsLdyQkFIkLHFJsx5_HsnzsSq1YiYK4RU4yZr1y4mInSD3uf45DSw9c4GR55vfeeKyH0DOCl4Rg_Wa7uV5STPiSMsy51A_QgnCuSsrZt4dogalUJcaCnqHzlO4wJoxj_RidUS6x4Aov0P3nnRldKLfQ70I0vtjCkEIs3kEbciW53ByKYAtT3AS_N9a6AYpN-F3ehA58YTNuircwjhCL1WD8Prk0S27MeBt8-O7a7LsGOxZfYRijaydv8oT9YHrXpifokTU-wdPjeYG-fHi_vbwq158-Xl-u1mXLlB7LxjbUWKk4p4pRKUVLQRLJtMx3oTpitaAKeGs6qqQwSjWykQQz6BplWlldoNcH31vj6110vYn7OhhXX63W9VzDhGJeMfqTZPbVgd3F8GOCNNa9Sy14bwYIU6qJokIQJgT9NyqJ0vnNUv0HijWRkvMqoy__Qu_CFPPfZkpoxpjWfF4JH6g2hpQi2NNeBNdzQOockHoOSH0MSJa8OBpPTQ_dSfAnERl4fgAcAJzaEjPOWVX9Ao6qvQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694449957</pqid></control><display><type>article</type><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</creator><creatorcontrib>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</creatorcontrib><description>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2405579</identifier><identifier>PMID: 25706580</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alignment ; cardiac modelling ; Computer Science ; Dynamics ; Heart ; Mathematical analysis ; Mathematical models ; Medical Imaging ; motion tracking ; non-rigid image registration ; Patients ; Population ; population statistics ; Sociology ; spatio-temporal alignment ; Statistics ; Strain ; Temporal logic ; Tensile stress ; tensor decomposition ; Tensors ; tetralogy of Fallot ; Tracking ; Transformations</subject><ispartof>IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1562-1575</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</citedby><cites>FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</cites><orcidid>0000-0002-6617-7664 ; 0000-0002-6256-8350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7045543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25706580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01205342$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>McLeod, Kristin</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Beerbaum, Philipp</creatorcontrib><creatorcontrib>Pennec, Xavier</creatorcontrib><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</description><subject>Alignment</subject><subject>cardiac modelling</subject><subject>Computer Science</subject><subject>Dynamics</subject><subject>Heart</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical Imaging</subject><subject>motion tracking</subject><subject>non-rigid image registration</subject><subject>Patients</subject><subject>Population</subject><subject>population statistics</subject><subject>Sociology</subject><subject>spatio-temporal alignment</subject><subject>Statistics</subject><subject>Strain</subject><subject>Temporal logic</subject><subject>Tensile stress</subject><subject>tensor decomposition</subject><subject>Tensors</subject><subject>tetralogy of Fallot</subject><subject>Tracking</subject><subject>Transformations</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks2P0zAQxS0EYrsLdyQkFIkLHFJsx5_HsnzsSq1YiYK4RU4yZr1y4mInSD3uf45DSw9c4GR55vfeeKyH0DOCl4Rg_Wa7uV5STPiSMsy51A_QgnCuSsrZt4dogalUJcaCnqHzlO4wJoxj_RidUS6x4Aov0P3nnRldKLfQ70I0vtjCkEIs3kEbciW53ByKYAtT3AS_N9a6AYpN-F3ehA58YTNuircwjhCL1WD8Prk0S27MeBt8-O7a7LsGOxZfYRijaydv8oT9YHrXpifokTU-wdPjeYG-fHi_vbwq158-Xl-u1mXLlB7LxjbUWKk4p4pRKUVLQRLJtMx3oTpitaAKeGs6qqQwSjWykQQz6BplWlldoNcH31vj6110vYn7OhhXX63W9VzDhGJeMfqTZPbVgd3F8GOCNNa9Sy14bwYIU6qJokIQJgT9NyqJ0vnNUv0HijWRkvMqoy__Qu_CFPPfZkpoxpjWfF4JH6g2hpQi2NNeBNdzQOockHoOSH0MSJa8OBpPTQ_dSfAnERl4fgAcAJzaEjPOWVX9Ao6qvQc</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>McLeod, Kristin</creator><creator>Sermesant, Maxime</creator><creator>Beerbaum, Philipp</creator><creator>Pennec, Xavier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6617-7664</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid></search><sort><creationdate>201507</creationdate><title>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</title><author>McLeod, Kristin ; Sermesant, Maxime ; Beerbaum, Philipp ; Pennec, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alignment</topic><topic>cardiac modelling</topic><topic>Computer Science</topic><topic>Dynamics</topic><topic>Heart</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical Imaging</topic><topic>motion tracking</topic><topic>non-rigid image registration</topic><topic>Patients</topic><topic>Population</topic><topic>population statistics</topic><topic>Sociology</topic><topic>spatio-temporal alignment</topic><topic>Statistics</topic><topic>Strain</topic><topic>Temporal logic</topic><topic>Tensile stress</topic><topic>tensor decomposition</topic><topic>Tensors</topic><topic>tetralogy of Fallot</topic><topic>Tracking</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>McLeod, Kristin</creatorcontrib><creatorcontrib>Sermesant, Maxime</creatorcontrib><creatorcontrib>Beerbaum, Philipp</creatorcontrib><creatorcontrib>Pennec, Xavier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLeod, Kristin</au><au>Sermesant, Maxime</au><au>Beerbaum, Philipp</au><au>Pennec, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-07</date><risdate>2015</risdate><volume>34</volume><issue>7</issue><spage>1562</spage><epage>1575</epage><pages>1562-1575</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Given that heart disease can cause abnormal motion dynamics over the cardiac cycle, understanding and quantifying cardiac motion can provide insight for clinicians to aid with diagnosis, therapy planning, and determining prognosis. The goal of this paper is to extract population-specific motion patterns from 3D displacements in order to identify the mean motion in a population, and to describe pathology-specific motion patterns in terms of the spatial and temporal components. Since there are common motion patterns observed in patients with the same condition, extracting these can lead towards a better understanding of the disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution, and pose. To overcome this, we analyze the parameters obtained from a cardiac-specific Polyaffine motion-tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects can be compared and analyzed in the space of Polyaffine transformations by projecting the transformations to a reduced order subspace in which dominant motion patterns in each population can be extracted. Using tensor decomposition, the spatial and temporal aspects can be decoupled in order to study the components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial and temporal behavior for each population. A key advantage of this method is the ability to regenerate motion sequences from the models, which can be visualized in terms of the full motion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25706580</pmid><doi>10.1109/TMI.2015.2405579</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6617-7664</orcidid><orcidid>https://orcid.org/0000-0002-6256-8350</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1562-1575 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_7045543 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Alignment cardiac modelling Computer Science Dynamics Heart Mathematical analysis Mathematical models Medical Imaging motion tracking non-rigid image registration Patients Population population statistics Sociology spatio-temporal alignment Statistics Strain Temporal logic Tensile stress tensor decomposition Tensors tetralogy of Fallot Tracking Transformations |
title | Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Tensor%20Decomposition%20of%20a%20Polyaffine%20Motion%20Model%20for%20a%20Better%20Analysis%20of%20Pathological%20Left%20Ventricular%20Dynamics&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=McLeod,%20Kristin&rft.date=2015-07&rft.volume=34&rft.issue=7&rft.spage=1562&rft.epage=1575&rft.pages=1562-1575&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2405579&rft_dat=%3Cproquest_ieee_%3E1718952878%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-bfb2af78552842776c2e71749728468d1f9628e5cad2876a88b7b7104edb8ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694449957&rft_id=info:pmid/25706580&rft_ieee_id=7045543&rfr_iscdi=true |