Loading…

Trajectory sensitivity and genetic algorithm based-method for load identification

Load identification is an important issue in power system representations to ensure that simulations will reproduce the dynamic response of a system during a disturbance. For a load model to be accurate, its parameter must be appropriately estimated by a parameter fitness algorithm. The success of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Cari, Elmer P. T., Alberto, Luis F. C., de Oliveira, Fernando M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 314
container_issue
container_start_page 309
container_title
container_volume
creator Cari, Elmer P. T.
Alberto, Luis F. C.
de Oliveira, Fernando M.
description Load identification is an important issue in power system representations to ensure that simulations will reproduce the dynamic response of a system during a disturbance. For a load model to be accurate, its parameter must be appropriately estimated by a parameter fitness algorithm. The success of the estimation depends mainly on the availability of a good initial parameter guess. If it is not available, the estimation process takes plenty of time to converge or to diverge. This paper proposes a hybrid algorithm based on trajectory sensitivity and generic algorithm. The advantages of the fitness algorithms of Trajectory Sensitivity and Generic Algorithm are combined so as to provide a robust algorithm regarding the initial parameter guess that guarantees the convergence even in the case of unavailability of a good initial parameter set. The combined algorithm was tested in one hundred simulations, in which the initial parameter guesses were randomly generated between limits (parameter uncertainties) for the assessment of the robustness of the algorithm. The results show that in 99 cases, the proposed methodology converged to the true values in a short time.
doi_str_mv 10.1109/IECON.2014.7048516
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7048516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7048516</ieee_id><sourcerecordid>7048516</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-5e711d0be67bf315309f74953dd8b64e60f33fb89f0bc3ccb3b441d38006b60c3</originalsourceid><addsrcrecordid>eNotz8tKw0AUgOERFGyrL6CbeYHEczKXJEsJ1RaKRajgrszlTDslF0kGIW_vwq7-3Qc_Y08IOSLUL9t1s__IC0CZlyArhfqGLVGWdS1BFHjLFqiUyFRZfN-z5TRdAJSsNC7Y52E0F3JpGGc-UT_FFH9jmrnpPT9RTyk6btrTMMZ07rg1E_mso3QePA_DyNvBeB499SmG6EyKQ__A7oJpJ3q8dsW-3taHZpPt9u_b5nWXxUKqlCkqET1Y0qUNApWAOpSyVsL7ympJGoIQwVZ1AOuEc1ZYKdGLCkBbDU6s2PO_G4no-DPGzozz8bov_gAxOFBl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Trajectory sensitivity and genetic algorithm based-method for load identification</title><source>IEEE Xplore All Conference Series</source><creator>Cari, Elmer P. T. ; Alberto, Luis F. C. ; de Oliveira, Fernando M.</creator><creatorcontrib>Cari, Elmer P. T. ; Alberto, Luis F. C. ; de Oliveira, Fernando M.</creatorcontrib><description>Load identification is an important issue in power system representations to ensure that simulations will reproduce the dynamic response of a system during a disturbance. For a load model to be accurate, its parameter must be appropriately estimated by a parameter fitness algorithm. The success of the estimation depends mainly on the availability of a good initial parameter guess. If it is not available, the estimation process takes plenty of time to converge or to diverge. This paper proposes a hybrid algorithm based on trajectory sensitivity and generic algorithm. The advantages of the fitness algorithms of Trajectory Sensitivity and Generic Algorithm are combined so as to provide a robust algorithm regarding the initial parameter guess that guarantees the convergence even in the case of unavailability of a good initial parameter set. The combined algorithm was tested in one hundred simulations, in which the initial parameter guesses were randomly generated between limits (parameter uncertainties) for the assessment of the robustness of the algorithm. The results show that in 99 cases, the proposed methodology converged to the true values in a short time.</description><identifier>ISSN: 1553-572X</identifier><identifier>EISBN: 1479940321</identifier><identifier>EISBN: 9781479940325</identifier><identifier>DOI: 10.1109/IECON.2014.7048516</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Estimation ; genetic algorithm ; Genetic algorithms ; Load model ; Load modeling ; Mathematical model ; parameters estimation ; Sensitivity ; Trajectory ; trajectory sensitivity</subject><ispartof>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, p.309-314</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7048516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7048516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cari, Elmer P. T.</creatorcontrib><creatorcontrib>Alberto, Luis F. C.</creatorcontrib><creatorcontrib>de Oliveira, Fernando M.</creatorcontrib><title>Trajectory sensitivity and genetic algorithm based-method for load identification</title><title>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>Load identification is an important issue in power system representations to ensure that simulations will reproduce the dynamic response of a system during a disturbance. For a load model to be accurate, its parameter must be appropriately estimated by a parameter fitness algorithm. The success of the estimation depends mainly on the availability of a good initial parameter guess. If it is not available, the estimation process takes plenty of time to converge or to diverge. This paper proposes a hybrid algorithm based on trajectory sensitivity and generic algorithm. The advantages of the fitness algorithms of Trajectory Sensitivity and Generic Algorithm are combined so as to provide a robust algorithm regarding the initial parameter guess that guarantees the convergence even in the case of unavailability of a good initial parameter set. The combined algorithm was tested in one hundred simulations, in which the initial parameter guesses were randomly generated between limits (parameter uncertainties) for the assessment of the robustness of the algorithm. The results show that in 99 cases, the proposed methodology converged to the true values in a short time.</description><subject>Convergence</subject><subject>Estimation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Load model</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>parameters estimation</subject><subject>Sensitivity</subject><subject>Trajectory</subject><subject>trajectory sensitivity</subject><issn>1553-572X</issn><isbn>1479940321</isbn><isbn>9781479940325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8tKw0AUgOERFGyrL6CbeYHEczKXJEsJ1RaKRajgrszlTDslF0kGIW_vwq7-3Qc_Y08IOSLUL9t1s__IC0CZlyArhfqGLVGWdS1BFHjLFqiUyFRZfN-z5TRdAJSsNC7Y52E0F3JpGGc-UT_FFH9jmrnpPT9RTyk6btrTMMZ07rg1E_mso3QePA_DyNvBeB499SmG6EyKQ__A7oJpJ3q8dsW-3taHZpPt9u_b5nWXxUKqlCkqET1Y0qUNApWAOpSyVsL7ympJGoIQwVZ1AOuEc1ZYKdGLCkBbDU6s2PO_G4no-DPGzozz8bov_gAxOFBl</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Cari, Elmer P. T.</creator><creator>Alberto, Luis F. C.</creator><creator>de Oliveira, Fernando M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201410</creationdate><title>Trajectory sensitivity and genetic algorithm based-method for load identification</title><author>Cari, Elmer P. T. ; Alberto, Luis F. C. ; de Oliveira, Fernando M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-5e711d0be67bf315309f74953dd8b64e60f33fb89f0bc3ccb3b441d38006b60c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>Estimation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Load model</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>parameters estimation</topic><topic>Sensitivity</topic><topic>Trajectory</topic><topic>trajectory sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Cari, Elmer P. T.</creatorcontrib><creatorcontrib>Alberto, Luis F. C.</creatorcontrib><creatorcontrib>de Oliveira, Fernando M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cari, Elmer P. T.</au><au>Alberto, Luis F. C.</au><au>de Oliveira, Fernando M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Trajectory sensitivity and genetic algorithm based-method for load identification</atitle><btitle>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2014-10</date><risdate>2014</risdate><spage>309</spage><epage>314</epage><pages>309-314</pages><issn>1553-572X</issn><eisbn>1479940321</eisbn><eisbn>9781479940325</eisbn><abstract>Load identification is an important issue in power system representations to ensure that simulations will reproduce the dynamic response of a system during a disturbance. For a load model to be accurate, its parameter must be appropriately estimated by a parameter fitness algorithm. The success of the estimation depends mainly on the availability of a good initial parameter guess. If it is not available, the estimation process takes plenty of time to converge or to diverge. This paper proposes a hybrid algorithm based on trajectory sensitivity and generic algorithm. The advantages of the fitness algorithms of Trajectory Sensitivity and Generic Algorithm are combined so as to provide a robust algorithm regarding the initial parameter guess that guarantees the convergence even in the case of unavailability of a good initial parameter set. The combined algorithm was tested in one hundred simulations, in which the initial parameter guesses were randomly generated between limits (parameter uncertainties) for the assessment of the robustness of the algorithm. The results show that in 99 cases, the proposed methodology converged to the true values in a short time.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2014.7048516</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, p.309-314
issn 1553-572X
language eng
recordid cdi_ieee_primary_7048516
source IEEE Xplore All Conference Series
subjects Convergence
Estimation
genetic algorithm
Genetic algorithms
Load model
Load modeling
Mathematical model
parameters estimation
Sensitivity
Trajectory
trajectory sensitivity
title Trajectory sensitivity and genetic algorithm based-method for load identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Trajectory%20sensitivity%20and%20genetic%20algorithm%20based-method%20for%20load%20identification&rft.btitle=IECON%202014%20-%2040th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Cari,%20Elmer%20P.%20T.&rft.date=2014-10&rft.spage=309&rft.epage=314&rft.pages=309-314&rft.issn=1553-572X&rft_id=info:doi/10.1109/IECON.2014.7048516&rft.eisbn=1479940321&rft.eisbn_list=9781479940325&rft_dat=%3Cieee_CHZPO%3E7048516%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i245t-5e711d0be67bf315309f74953dd8b64e60f33fb89f0bc3ccb3b441d38006b60c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7048516&rfr_iscdi=true