Loading…
A distributed randomization framework for privacy preservation in big data
The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic val...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Shukla, Samiksha Sadashivappa, G. |
description | The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality. |
doi_str_mv | 10.1109/CSIBIG.2014.7056940 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7056940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7056940</ieee_id><sourcerecordid>7056940</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhUdEUGqeoJt5gcR75zezrEFrpOBCXZdJ5kZGTSKTWKlPb6HduPo4cPg4HMaWCAUiuJvqub6t14UAVIUFbZyCM5Y5W6KyzkkwQp7_yxIuWTZN7wAghHFSiyv2uOIhTnOKzfdMgSc_hLGPv36O48C75Hv6GdMH78bEv1Lc-XZ_IE2UdsdKHHgT33jws79mF53_nCg7ccFe7-9eqod887Suq9Umj0LpOTfkAurQSd1QK0uDMljXYFcqL70F22rTkfBgnQ3GOS2kU7IlVGg9YiC5YMujNxLR9rCq92m_PT0g_wAG6E-a</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A distributed randomization framework for privacy preservation in big data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shukla, Samiksha ; Sadashivappa, G.</creator><creatorcontrib>Shukla, Samiksha ; Sadashivappa, G.</creatorcontrib><description>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</description><identifier>ISBN: 9781479930630</identifier><identifier>ISBN: 1479930636</identifier><identifier>EISBN: 9781479930623</identifier><identifier>EISBN: 1479930628</identifier><identifier>EISBN: 9781479930647</identifier><identifier>EISBN: 1479930644</identifier><identifier>DOI: 10.1109/CSIBIG.2014.7056940</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anonymization ; Computer architecture ; Confidentiality ; Encryption ; Handheld computers ; Packetization ; Performance analysis ; Privacy ; Protocols ; Secure Multi-Party Computation (SMC) ; Security ; Trusted third party (TTP)</subject><ispartof>2014 Conference on IT in Business, Industry and Government (CSIBIG), 2014, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7056940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7056940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shukla, Samiksha</creatorcontrib><creatorcontrib>Sadashivappa, G.</creatorcontrib><title>A distributed randomization framework for privacy preservation in big data</title><title>2014 Conference on IT in Business, Industry and Government (CSIBIG)</title><addtitle>CSIBIG</addtitle><description>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</description><subject>Anonymization</subject><subject>Computer architecture</subject><subject>Confidentiality</subject><subject>Encryption</subject><subject>Handheld computers</subject><subject>Packetization</subject><subject>Performance analysis</subject><subject>Privacy</subject><subject>Protocols</subject><subject>Secure Multi-Party Computation (SMC)</subject><subject>Security</subject><subject>Trusted third party (TTP)</subject><isbn>9781479930630</isbn><isbn>1479930636</isbn><isbn>9781479930623</isbn><isbn>1479930628</isbn><isbn>9781479930647</isbn><isbn>1479930644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1Kw0AUhUdEUGqeoJt5gcR75zezrEFrpOBCXZdJ5kZGTSKTWKlPb6HduPo4cPg4HMaWCAUiuJvqub6t14UAVIUFbZyCM5Y5W6KyzkkwQp7_yxIuWTZN7wAghHFSiyv2uOIhTnOKzfdMgSc_hLGPv36O48C75Hv6GdMH78bEv1Lc-XZ_IE2UdsdKHHgT33jws79mF53_nCg7ccFe7-9eqod887Suq9Umj0LpOTfkAurQSd1QK0uDMljXYFcqL70F22rTkfBgnQ3GOS2kU7IlVGg9YiC5YMujNxLR9rCq92m_PT0g_wAG6E-a</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Shukla, Samiksha</creator><creator>Sadashivappa, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201403</creationdate><title>A distributed randomization framework for privacy preservation in big data</title><author>Shukla, Samiksha ; Sadashivappa, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anonymization</topic><topic>Computer architecture</topic><topic>Confidentiality</topic><topic>Encryption</topic><topic>Handheld computers</topic><topic>Packetization</topic><topic>Performance analysis</topic><topic>Privacy</topic><topic>Protocols</topic><topic>Secure Multi-Party Computation (SMC)</topic><topic>Security</topic><topic>Trusted third party (TTP)</topic><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Samiksha</creatorcontrib><creatorcontrib>Sadashivappa, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shukla, Samiksha</au><au>Sadashivappa, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A distributed randomization framework for privacy preservation in big data</atitle><btitle>2014 Conference on IT in Business, Industry and Government (CSIBIG)</btitle><stitle>CSIBIG</stitle><date>2014-03</date><risdate>2014</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781479930630</isbn><isbn>1479930636</isbn><eisbn>9781479930623</eisbn><eisbn>1479930628</eisbn><eisbn>9781479930647</eisbn><eisbn>1479930644</eisbn><abstract>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</abstract><pub>IEEE</pub><doi>10.1109/CSIBIG.2014.7056940</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781479930630 |
ispartof | 2014 Conference on IT in Business, Industry and Government (CSIBIG), 2014, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_7056940 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Anonymization Computer architecture Confidentiality Encryption Handheld computers Packetization Performance analysis Privacy Protocols Secure Multi-Party Computation (SMC) Security Trusted third party (TTP) |
title | A distributed randomization framework for privacy preservation in big data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20distributed%20randomization%20framework%20for%20privacy%20preservation%20in%20big%20data&rft.btitle=2014%20Conference%20on%20IT%20in%20Business,%20Industry%20and%20Government%20(CSIBIG)&rft.au=Shukla,%20Samiksha&rft.date=2014-03&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781479930630&rft.isbn_list=1479930636&rft_id=info:doi/10.1109/CSIBIG.2014.7056940&rft.eisbn=9781479930623&rft.eisbn_list=1479930628&rft.eisbn_list=9781479930647&rft.eisbn_list=1479930644&rft_dat=%3Cieee_6IE%3E7056940%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7056940&rfr_iscdi=true |