Loading…

A distributed randomization framework for privacy preservation in big data

The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic val...

Full description

Saved in:
Bibliographic Details
Main Authors: Shukla, Samiksha, Sadashivappa, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Shukla, Samiksha
Sadashivappa, G.
description The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.
doi_str_mv 10.1109/CSIBIG.2014.7056940
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7056940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7056940</ieee_id><sourcerecordid>7056940</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhUdEUGqeoJt5gcR75zezrEFrpOBCXZdJ5kZGTSKTWKlPb6HduPo4cPg4HMaWCAUiuJvqub6t14UAVIUFbZyCM5Y5W6KyzkkwQp7_yxIuWTZN7wAghHFSiyv2uOIhTnOKzfdMgSc_hLGPv36O48C75Hv6GdMH78bEv1Lc-XZ_IE2UdsdKHHgT33jws79mF53_nCg7ccFe7-9eqod887Suq9Umj0LpOTfkAurQSd1QK0uDMljXYFcqL70F22rTkfBgnQ3GOS2kU7IlVGg9YiC5YMujNxLR9rCq92m_PT0g_wAG6E-a</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A distributed randomization framework for privacy preservation in big data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shukla, Samiksha ; Sadashivappa, G.</creator><creatorcontrib>Shukla, Samiksha ; Sadashivappa, G.</creatorcontrib><description>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</description><identifier>ISBN: 9781479930630</identifier><identifier>ISBN: 1479930636</identifier><identifier>EISBN: 9781479930623</identifier><identifier>EISBN: 1479930628</identifier><identifier>EISBN: 9781479930647</identifier><identifier>EISBN: 1479930644</identifier><identifier>DOI: 10.1109/CSIBIG.2014.7056940</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anonymization ; Computer architecture ; Confidentiality ; Encryption ; Handheld computers ; Packetization ; Performance analysis ; Privacy ; Protocols ; Secure Multi-Party Computation (SMC) ; Security ; Trusted third party (TTP)</subject><ispartof>2014 Conference on IT in Business, Industry and Government (CSIBIG), 2014, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7056940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7056940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shukla, Samiksha</creatorcontrib><creatorcontrib>Sadashivappa, G.</creatorcontrib><title>A distributed randomization framework for privacy preservation in big data</title><title>2014 Conference on IT in Business, Industry and Government (CSIBIG)</title><addtitle>CSIBIG</addtitle><description>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</description><subject>Anonymization</subject><subject>Computer architecture</subject><subject>Confidentiality</subject><subject>Encryption</subject><subject>Handheld computers</subject><subject>Packetization</subject><subject>Performance analysis</subject><subject>Privacy</subject><subject>Protocols</subject><subject>Secure Multi-Party Computation (SMC)</subject><subject>Security</subject><subject>Trusted third party (TTP)</subject><isbn>9781479930630</isbn><isbn>1479930636</isbn><isbn>9781479930623</isbn><isbn>1479930628</isbn><isbn>9781479930647</isbn><isbn>1479930644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1Kw0AUhUdEUGqeoJt5gcR75zezrEFrpOBCXZdJ5kZGTSKTWKlPb6HduPo4cPg4HMaWCAUiuJvqub6t14UAVIUFbZyCM5Y5W6KyzkkwQp7_yxIuWTZN7wAghHFSiyv2uOIhTnOKzfdMgSc_hLGPv36O48C75Hv6GdMH78bEv1Lc-XZ_IE2UdsdKHHgT33jws79mF53_nCg7ccFe7-9eqod887Suq9Umj0LpOTfkAurQSd1QK0uDMljXYFcqL70F22rTkfBgnQ3GOS2kU7IlVGg9YiC5YMujNxLR9rCq92m_PT0g_wAG6E-a</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Shukla, Samiksha</creator><creator>Sadashivappa, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201403</creationdate><title>A distributed randomization framework for privacy preservation in big data</title><author>Shukla, Samiksha ; Sadashivappa, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anonymization</topic><topic>Computer architecture</topic><topic>Confidentiality</topic><topic>Encryption</topic><topic>Handheld computers</topic><topic>Packetization</topic><topic>Performance analysis</topic><topic>Privacy</topic><topic>Protocols</topic><topic>Secure Multi-Party Computation (SMC)</topic><topic>Security</topic><topic>Trusted third party (TTP)</topic><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Samiksha</creatorcontrib><creatorcontrib>Sadashivappa, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shukla, Samiksha</au><au>Sadashivappa, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A distributed randomization framework for privacy preservation in big data</atitle><btitle>2014 Conference on IT in Business, Industry and Government (CSIBIG)</btitle><stitle>CSIBIG</stitle><date>2014-03</date><risdate>2014</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781479930630</isbn><isbn>1479930636</isbn><eisbn>9781479930623</eisbn><eisbn>1479930628</eisbn><eisbn>9781479930647</eisbn><eisbn>1479930644</eisbn><abstract>The privacy preservation is a big challenge for data generated from various sources such as social networking sites, online transaction, weather forecast to name a few. Due to the socialization of the internet and cloud computing pica bytes of unstructured data is generated online with intrinsic values. The inflow of big data and the requirement to move this information throughout an organization has become a new target for hackers. This data is subject to privacy laws and should be protected. The proposed protocol is one step toward the security in case of above circumstances where data is coming from multiple participants and all are concerned about individual privacy and confidentiality.</abstract><pub>IEEE</pub><doi>10.1109/CSIBIG.2014.7056940</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479930630
ispartof 2014 Conference on IT in Business, Industry and Government (CSIBIG), 2014, p.1-5
issn
language eng
recordid cdi_ieee_primary_7056940
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anonymization
Computer architecture
Confidentiality
Encryption
Handheld computers
Packetization
Performance analysis
Privacy
Protocols
Secure Multi-Party Computation (SMC)
Security
Trusted third party (TTP)
title A distributed randomization framework for privacy preservation in big data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20distributed%20randomization%20framework%20for%20privacy%20preservation%20in%20big%20data&rft.btitle=2014%20Conference%20on%20IT%20in%20Business,%20Industry%20and%20Government%20(CSIBIG)&rft.au=Shukla,%20Samiksha&rft.date=2014-03&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781479930630&rft.isbn_list=1479930636&rft_id=info:doi/10.1109/CSIBIG.2014.7056940&rft.eisbn=9781479930623&rft.eisbn_list=1479930628&rft.eisbn_list=9781479930647&rft.eisbn_list=1479930644&rft_dat=%3Cieee_6IE%3E7056940%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i245t-6e9d15df35bec38613d79b1f84a3a707c56fe2a0797d699523943ce1417a11de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7056940&rfr_iscdi=true