Loading…
Exploring technological trends for patent evaluation
Patents are very important intangible assets that protect firm technologies and maintain market competitiveness. Thus, patent evaluation is critical for firm business strategy and innovation management. Currently patent evaluation mostly relies on some meta information of patents, such as number of...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 283 |
container_issue | |
container_start_page | 277 |
container_title | |
container_volume | |
creator | Shuting Wang Wang-Chien Lee Zhen Lei Xianliang Zhang Yu-Hsuan Kuo |
description | Patents are very important intangible assets that protect firm technologies and maintain market competitiveness. Thus, patent evaluation is critical for firm business strategy and innovation management. Currently patent evaluation mostly relies on some meta information of patents, such as number of forward/backward citations and number of claims. In this paper, we propose to identify patent technological trends, which carries information about technology evolution and trajectories among patents, to enable more effective and precise patent evaluation. We explore features to capture both the value of trends and the quality of patents within a trend, and perform patent evaluation to validate the extracted trends and features using patents in the United States Patent and Trademark Office (USPTO) dataset. Experimental results demonstrate that the identified technological trends are able to capture patent value precisely. With the proposed trend related features extracted from our identified trends, we can improve patent evaluation performance significantly over the baseline using conventional features. |
doi_str_mv | 10.1109/DSAA.2014.7058085 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7058085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7058085</ieee_id><sourcerecordid>7058085</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-6fe6ce3a130f4985ca84a14389a26557920d7f743d60c9fee10ed06172d0a95c3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQMeFoNR8gLjJDyTeyTzvMtSqhYIL23W5TO7UkZiEZBT9ewW7OnAWB44QtxJqKQHvH17btm5A6tqB8eDNhSjQeakdokWU6koUy_IOABLtn1fXQm--p36c03AqM4e3YezHUwrUl3nmoVvKOM7lRJmHXPIX9Z-U0zjciMtI_cLFmStxeNzs18_V7uVpu253VWq0yZWNbAMrkgqiRm8CeU1SK4_UWGMcNtC56LTqLASMzBK4Aytd0wGhCWol7v67iZmP05w-aP45nt_UL_u_RCo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploring technological trends for patent evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shuting Wang ; Wang-Chien Lee ; Zhen Lei ; Xianliang Zhang ; Yu-Hsuan Kuo</creator><creatorcontrib>Shuting Wang ; Wang-Chien Lee ; Zhen Lei ; Xianliang Zhang ; Yu-Hsuan Kuo</creatorcontrib><description>Patents are very important intangible assets that protect firm technologies and maintain market competitiveness. Thus, patent evaluation is critical for firm business strategy and innovation management. Currently patent evaluation mostly relies on some meta information of patents, such as number of forward/backward citations and number of claims. In this paper, we propose to identify patent technological trends, which carries information about technology evolution and trajectories among patents, to enable more effective and precise patent evaluation. We explore features to capture both the value of trends and the quality of patents within a trend, and perform patent evaluation to validate the extracted trends and features using patents in the United States Patent and Trademark Office (USPTO) dataset. Experimental results demonstrate that the identified technological trends are able to capture patent value precisely. With the proposed trend related features extracted from our identified trends, we can improve patent evaluation performance significantly over the baseline using conventional features.</description><identifier>EISBN: 9781479969913</identifier><identifier>EISBN: 1479969915</identifier><identifier>DOI: 10.1109/DSAA.2014.7058085</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Maintenance engineering ; Technological innovation ; Trajectory</subject><ispartof>2014 International Conference on Data Science and Advanced Analytics (DSAA), 2014, p.277-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7058085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7058085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuting Wang</creatorcontrib><creatorcontrib>Wang-Chien Lee</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Xianliang Zhang</creatorcontrib><creatorcontrib>Yu-Hsuan Kuo</creatorcontrib><title>Exploring technological trends for patent evaluation</title><title>2014 International Conference on Data Science and Advanced Analytics (DSAA)</title><addtitle>DSAA</addtitle><description>Patents are very important intangible assets that protect firm technologies and maintain market competitiveness. Thus, patent evaluation is critical for firm business strategy and innovation management. Currently patent evaluation mostly relies on some meta information of patents, such as number of forward/backward citations and number of claims. In this paper, we propose to identify patent technological trends, which carries information about technology evolution and trajectories among patents, to enable more effective and precise patent evaluation. We explore features to capture both the value of trends and the quality of patents within a trend, and perform patent evaluation to validate the extracted trends and features using patents in the United States Patent and Trademark Office (USPTO) dataset. Experimental results demonstrate that the identified technological trends are able to capture patent value precisely. With the proposed trend related features extracted from our identified trends, we can improve patent evaluation performance significantly over the baseline using conventional features.</description><subject>Feature extraction</subject><subject>Maintenance engineering</subject><subject>Technological innovation</subject><subject>Trajectory</subject><isbn>9781479969913</isbn><isbn>1479969915</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQMeFoNR8gLjJDyTeyTzvMtSqhYIL23W5TO7UkZiEZBT9ewW7OnAWB44QtxJqKQHvH17btm5A6tqB8eDNhSjQeakdokWU6koUy_IOABLtn1fXQm--p36c03AqM4e3YezHUwrUl3nmoVvKOM7lRJmHXPIX9Z-U0zjciMtI_cLFmStxeNzs18_V7uVpu253VWq0yZWNbAMrkgqiRm8CeU1SK4_UWGMcNtC56LTqLASMzBK4Aytd0wGhCWol7v67iZmP05w-aP45nt_UL_u_RCo</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Shuting Wang</creator><creator>Wang-Chien Lee</creator><creator>Zhen Lei</creator><creator>Xianliang Zhang</creator><creator>Yu-Hsuan Kuo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201410</creationdate><title>Exploring technological trends for patent evaluation</title><author>Shuting Wang ; Wang-Chien Lee ; Zhen Lei ; Xianliang Zhang ; Yu-Hsuan Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-6fe6ce3a130f4985ca84a14389a26557920d7f743d60c9fee10ed06172d0a95c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Feature extraction</topic><topic>Maintenance engineering</topic><topic>Technological innovation</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuting Wang</creatorcontrib><creatorcontrib>Wang-Chien Lee</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Xianliang Zhang</creatorcontrib><creatorcontrib>Yu-Hsuan Kuo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuting Wang</au><au>Wang-Chien Lee</au><au>Zhen Lei</au><au>Xianliang Zhang</au><au>Yu-Hsuan Kuo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring technological trends for patent evaluation</atitle><btitle>2014 International Conference on Data Science and Advanced Analytics (DSAA)</btitle><stitle>DSAA</stitle><date>2014-10</date><risdate>2014</risdate><spage>277</spage><epage>283</epage><pages>277-283</pages><eisbn>9781479969913</eisbn><eisbn>1479969915</eisbn><abstract>Patents are very important intangible assets that protect firm technologies and maintain market competitiveness. Thus, patent evaluation is critical for firm business strategy and innovation management. Currently patent evaluation mostly relies on some meta information of patents, such as number of forward/backward citations and number of claims. In this paper, we propose to identify patent technological trends, which carries information about technology evolution and trajectories among patents, to enable more effective and precise patent evaluation. We explore features to capture both the value of trends and the quality of patents within a trend, and perform patent evaluation to validate the extracted trends and features using patents in the United States Patent and Trademark Office (USPTO) dataset. Experimental results demonstrate that the identified technological trends are able to capture patent value precisely. With the proposed trend related features extracted from our identified trends, we can improve patent evaluation performance significantly over the baseline using conventional features.</abstract><pub>IEEE</pub><doi>10.1109/DSAA.2014.7058085</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9781479969913 |
ispartof | 2014 International Conference on Data Science and Advanced Analytics (DSAA), 2014, p.277-283 |
issn | |
language | eng |
recordid | cdi_ieee_primary_7058085 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction Maintenance engineering Technological innovation Trajectory |
title | Exploring technological trends for patent evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20technological%20trends%20for%20patent%20evaluation&rft.btitle=2014%20International%20Conference%20on%20Data%20Science%20and%20Advanced%20Analytics%20(DSAA)&rft.au=Shuting%20Wang&rft.date=2014-10&rft.spage=277&rft.epage=283&rft.pages=277-283&rft_id=info:doi/10.1109/DSAA.2014.7058085&rft.eisbn=9781479969913&rft.eisbn_list=1479969915&rft_dat=%3Cieee_6IE%3E7058085%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i245t-6fe6ce3a130f4985ca84a14389a26557920d7f743d60c9fee10ed06172d0a95c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7058085&rfr_iscdi=true |