Loading…

Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree

A vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree is presented. Misclassification problem associated with hyperplane decision is eliminated by a multi-level back-tracing algorithm. The vector quantization complexity is further lowered by a novel...

Full description

Saved in:
Bibliographic Details
Main Authors: Alton, Kam-Fai Chan, Kam-Tim Woo, Chi-Wah Kok
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Alton, Kam-Fai Chan
Kam-Tim Woo
Chi-Wah Kok
description A vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree is presented. Misclassification problem associated with hyperplane decision is eliminated by a multi-level back-tracing algorithm. The vector quantization complexity is further lowered by a novel relative distance quantization rule. Triangular inequality is applied to lower bound the search distance, thus eliminated all the sub-tree in the k-dimensional search tree during back-tracing. Vector quantization image coding results are presented which showed the proposed algorithm outperform other algorithms in literature both in PSNR and computation time.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7071990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7071990</ieee_id><sourcerecordid>7071990</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-297a4bfe6016a794ee372f3040c982771feeeac0b16632305805b388c53f49883</originalsourceid><addsrcrecordid>eNpNjL1qwzAURk1poSHNE3TRCwiuJNuSxhL6B4EuIWu4tq9itbbsSvKQPn0DbaHT-YbznatiJaWwvCqtuP63b4tNSu8AoCSoStargg7U5imyzwVD9l-Y_RSYw5RZIoxtz3A4TdHnfmRL8uHE-vNMcR4wEGswUcc-eOdHCulyxIGNy5A9D1NHf4Ecie6KG4dDos0v18X-6XG_feG7t-fX7cOOewuZS6uxbBzVIGrUtiRSWjoFJbTWSK2FIyJsoRF1raSCykDVKGPaSrnSGqPWxf1P1l_E4xz9iPF81KCFtaC-AUYQUWk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree</title><source>IEEE Xplore All Conference Series</source><creator>Alton, Kam-Fai Chan ; Kam-Tim Woo ; Chi-Wah Kok</creator><creatorcontrib>Alton, Kam-Fai Chan ; Kam-Tim Woo ; Chi-Wah Kok</creatorcontrib><description>A vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree is presented. Misclassification problem associated with hyperplane decision is eliminated by a multi-level back-tracing algorithm. The vector quantization complexity is further lowered by a novel relative distance quantization rule. Triangular inequality is applied to lower bound the search distance, thus eliminated all the sub-tree in the k-dimensional search tree during back-tracing. Vector quantization image coding results are presented which showed the proposed algorithm outperform other algorithms in literature both in PSNR and computation time.</description><identifier>ISSN: 2219-5491</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Acoustics ; Airplanes ; Barium ; Boats ; PSNR</subject><ispartof>2002 11th European Signal Processing Conference, 2002, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7071990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7071990$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alton, Kam-Fai Chan</creatorcontrib><creatorcontrib>Kam-Tim Woo</creatorcontrib><creatorcontrib>Chi-Wah Kok</creatorcontrib><title>Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree</title><title>2002 11th European Signal Processing Conference</title><addtitle>EUSIPCO</addtitle><description>A vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree is presented. Misclassification problem associated with hyperplane decision is eliminated by a multi-level back-tracing algorithm. The vector quantization complexity is further lowered by a novel relative distance quantization rule. Triangular inequality is applied to lower bound the search distance, thus eliminated all the sub-tree in the k-dimensional search tree during back-tracing. Vector quantization image coding results are presented which showed the proposed algorithm outperform other algorithms in literature both in PSNR and computation time.</description><subject>Abstracts</subject><subject>Acoustics</subject><subject>Airplanes</subject><subject>Barium</subject><subject>Boats</subject><subject>PSNR</subject><issn>2219-5491</issn><issn>2219-5491</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjL1qwzAURk1poSHNE3TRCwiuJNuSxhL6B4EuIWu4tq9itbbsSvKQPn0DbaHT-YbznatiJaWwvCqtuP63b4tNSu8AoCSoStargg7U5imyzwVD9l-Y_RSYw5RZIoxtz3A4TdHnfmRL8uHE-vNMcR4wEGswUcc-eOdHCulyxIGNy5A9D1NHf4Ecie6KG4dDos0v18X-6XG_feG7t-fX7cOOewuZS6uxbBzVIGrUtiRSWjoFJbTWSK2FIyJsoRF1raSCykDVKGPaSrnSGqPWxf1P1l_E4xz9iPF81KCFtaC-AUYQUWk</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Alton, Kam-Fai Chan</creator><creator>Kam-Tim Woo</creator><creator>Chi-Wah Kok</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200209</creationdate><title>Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree</title><author>Alton, Kam-Fai Chan ; Kam-Tim Woo ; Chi-Wah Kok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-297a4bfe6016a794ee372f3040c982771feeeac0b16632305805b388c53f49883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Abstracts</topic><topic>Acoustics</topic><topic>Airplanes</topic><topic>Barium</topic><topic>Boats</topic><topic>PSNR</topic><toplevel>online_resources</toplevel><creatorcontrib>Alton, Kam-Fai Chan</creatorcontrib><creatorcontrib>Kam-Tim Woo</creatorcontrib><creatorcontrib>Chi-Wah Kok</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alton, Kam-Fai Chan</au><au>Kam-Tim Woo</au><au>Chi-Wah Kok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree</atitle><btitle>2002 11th European Signal Processing Conference</btitle><stitle>EUSIPCO</stitle><date>2002-09</date><risdate>2002</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><abstract>A vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree is presented. Misclassification problem associated with hyperplane decision is eliminated by a multi-level back-tracing algorithm. The vector quantization complexity is further lowered by a novel relative distance quantization rule. Triangular inequality is applied to lower bound the search distance, thus eliminated all the sub-tree in the k-dimensional search tree during back-tracing. Vector quantization image coding results are presented which showed the proposed algorithm outperform other algorithms in literature both in PSNR and computation time.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2002 11th European Signal Processing Conference, 2002, p.1-4
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_7071990
source IEEE Xplore All Conference Series
subjects Abstracts
Acoustics
Airplanes
Barium
Boats
PSNR
title Vector quantization fast search algorithm using hyperplane based k-dimensional multi-node search tree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vector%20quantization%20fast%20search%20algorithm%20using%20hyperplane%20based%20k-dimensional%20multi-node%20search%20tree&rft.btitle=2002%2011th%20European%20Signal%20Processing%20Conference&rft.au=Alton,%20Kam-Fai%20Chan&rft.date=2002-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2219-5491&rft.eissn=2219-5491&rft_id=info:doi/&rft_dat=%3Cieee_CHZPO%3E7071990%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-297a4bfe6016a794ee372f3040c982771feeeac0b16632305805b388c53f49883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7071990&rfr_iscdi=true