Loading…

Sampling and reconstruction of non-bandlimited signals using Slepian functions

In this paper, we show that the Whittaker-Shannon (WS) sampling theory can be modified for the reconstruction of non-bandlimited signals. According to the uncertainty principle, non-bandlimited signals have finite time support and thus are more common in practical application. Prolate spheroidal wav...

Full description

Saved in:
Bibliographic Details
Main Authors: Senay, Seda, Chaparro, Luis F., Akan, Aydin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Senay, Seda
Chaparro, Luis F.
Akan, Aydin
description In this paper, we show that the Whittaker-Shannon (WS) sampling theory can be modified for the reconstruction of non-bandlimited signals. According to the uncertainty principle, non-bandlimited signals have finite time support and thus are more common in practical application. Prolate spheroidal wave functions also called Slepian functions have finite time support and maximum energy concentration within a given bandwidth, so instead of infinite length sinc functions, we consider Slepian functions. We show that by projecting non-bandlimited signals onto the space represented by an orthonormal Slepian basis the minimum sampling rate can be reduced nearly by half, with no aliasing. Moreover, the reconstruction error is much lower than the one obtained by the WS theory. In some cases, depending on the desired reconstruction accuracy, it is possible to lower the rate even further. Simulations show the efficiency of the Slepian functions in the reconstruction of uniformly or non-uniformly sampled bandlimited or non-bandlimited signals.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7080402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7080402</ieee_id><sourcerecordid>7080402</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-67a30146870f52374a795ab30ac1ba0afbbc8df486f2b2da20b56278f2a8c7bb3</originalsourceid><addsrcrecordid>eNpNjMlqwzAURUVpoSHNF3SjHzA8P41ehtAJQrtI9uFJloKCLRvLXvTvmw6Lru6Bw7k3bIVYN5WSTX37j-_ZppQLAAgEoVCv2PuB-rFL-cwpt3wKfshlnhY_pyHzIfI85MpdVZf6NIeWl3TO1BW-lO_m0IUxUeZxyT9FeWB38arD5m_X7Pj8dNy9VvuPl7fddl-lBuZKGxJQS20NRIXCSDKNIieAfO0IKDrnbRul1REdtoTglEZjI5L1xjmxZo-_tymEcBqn1NP0eTJgQQKKLw3HSdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sampling and reconstruction of non-bandlimited signals using Slepian functions</title><source>IEEE Xplore All Conference Series</source><creator>Senay, Seda ; Chaparro, Luis F. ; Akan, Aydin</creator><creatorcontrib>Senay, Seda ; Chaparro, Luis F. ; Akan, Aydin</creatorcontrib><description>In this paper, we show that the Whittaker-Shannon (WS) sampling theory can be modified for the reconstruction of non-bandlimited signals. According to the uncertainty principle, non-bandlimited signals have finite time support and thus are more common in practical application. Prolate spheroidal wave functions also called Slepian functions have finite time support and maximum energy concentration within a given bandwidth, so instead of infinite length sinc functions, we consider Slepian functions. We show that by projecting non-bandlimited signals onto the space represented by an orthonormal Slepian basis the minimum sampling rate can be reduced nearly by half, with no aliasing. Moreover, the reconstruction error is much lower than the one obtained by the WS theory. In some cases, depending on the desired reconstruction accuracy, it is possible to lower the rate even further. Simulations show the efficiency of the Slepian functions in the reconstruction of uniformly or non-uniformly sampled bandlimited or non-bandlimited signals.</description><identifier>ISSN: 2219-5491</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Chirp ; Compressed sensing ; Eigenvalues and eigenfunctions ; Europe ; Time-frequency analysis</subject><ispartof>2008 16th European Signal Processing Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7080402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7080402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Senay, Seda</creatorcontrib><creatorcontrib>Chaparro, Luis F.</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><title>Sampling and reconstruction of non-bandlimited signals using Slepian functions</title><title>2008 16th European Signal Processing Conference</title><addtitle>EUSIPCO</addtitle><description>In this paper, we show that the Whittaker-Shannon (WS) sampling theory can be modified for the reconstruction of non-bandlimited signals. According to the uncertainty principle, non-bandlimited signals have finite time support and thus are more common in practical application. Prolate spheroidal wave functions also called Slepian functions have finite time support and maximum energy concentration within a given bandwidth, so instead of infinite length sinc functions, we consider Slepian functions. We show that by projecting non-bandlimited signals onto the space represented by an orthonormal Slepian basis the minimum sampling rate can be reduced nearly by half, with no aliasing. Moreover, the reconstruction error is much lower than the one obtained by the WS theory. In some cases, depending on the desired reconstruction accuracy, it is possible to lower the rate even further. Simulations show the efficiency of the Slepian functions in the reconstruction of uniformly or non-uniformly sampled bandlimited or non-bandlimited signals.</description><subject>Bandwidth</subject><subject>Chirp</subject><subject>Compressed sensing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Europe</subject><subject>Time-frequency analysis</subject><issn>2219-5491</issn><issn>2219-5491</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjMlqwzAURUVpoSHNF3SjHzA8P41ehtAJQrtI9uFJloKCLRvLXvTvmw6Lru6Bw7k3bIVYN5WSTX37j-_ZppQLAAgEoVCv2PuB-rFL-cwpt3wKfshlnhY_pyHzIfI85MpdVZf6NIeWl3TO1BW-lO_m0IUxUeZxyT9FeWB38arD5m_X7Pj8dNy9VvuPl7fddl-lBuZKGxJQS20NRIXCSDKNIieAfO0IKDrnbRul1REdtoTglEZjI5L1xjmxZo-_tymEcBqn1NP0eTJgQQKKLw3HSdQ</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Senay, Seda</creator><creator>Chaparro, Luis F.</creator><creator>Akan, Aydin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Sampling and reconstruction of non-bandlimited signals using Slepian functions</title><author>Senay, Seda ; Chaparro, Luis F. ; Akan, Aydin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-67a30146870f52374a795ab30ac1ba0afbbc8df486f2b2da20b56278f2a8c7bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bandwidth</topic><topic>Chirp</topic><topic>Compressed sensing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Europe</topic><topic>Time-frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Senay, Seda</creatorcontrib><creatorcontrib>Chaparro, Luis F.</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Senay, Seda</au><au>Chaparro, Luis F.</au><au>Akan, Aydin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sampling and reconstruction of non-bandlimited signals using Slepian functions</atitle><btitle>2008 16th European Signal Processing Conference</btitle><stitle>EUSIPCO</stitle><date>2008-08</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><abstract>In this paper, we show that the Whittaker-Shannon (WS) sampling theory can be modified for the reconstruction of non-bandlimited signals. According to the uncertainty principle, non-bandlimited signals have finite time support and thus are more common in practical application. Prolate spheroidal wave functions also called Slepian functions have finite time support and maximum energy concentration within a given bandwidth, so instead of infinite length sinc functions, we consider Slepian functions. We show that by projecting non-bandlimited signals onto the space represented by an orthonormal Slepian basis the minimum sampling rate can be reduced nearly by half, with no aliasing. Moreover, the reconstruction error is much lower than the one obtained by the WS theory. In some cases, depending on the desired reconstruction accuracy, it is possible to lower the rate even further. Simulations show the efficiency of the Slepian functions in the reconstruction of uniformly or non-uniformly sampled bandlimited or non-bandlimited signals.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2008 16th European Signal Processing Conference, 2008, p.1-5
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_7080402
source IEEE Xplore All Conference Series
subjects Bandwidth
Chirp
Compressed sensing
Eigenvalues and eigenfunctions
Europe
Time-frequency analysis
title Sampling and reconstruction of non-bandlimited signals using Slepian functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sampling%20and%20reconstruction%20of%20non-bandlimited%20signals%20using%20Slepian%20functions&rft.btitle=2008%2016th%20European%20Signal%20Processing%20Conference&rft.au=Senay,%20Seda&rft.date=2008-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2219-5491&rft.eissn=2219-5491&rft_id=info:doi/&rft_dat=%3Cieee_CHZPO%3E7080402%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-67a30146870f52374a795ab30ac1ba0afbbc8df486f2b2da20b56278f2a8c7bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7080402&rfr_iscdi=true