Loading…

Compressive sensing and random filtering of EEG signals using Slepian basis

Electroencephalography (EEG) is a major tool for clinical diagnosis of neurological diseases and brain research. EEGs are often collected over numerous channels and trials, providing large data sets that require efficient collection and accurate compression. Compressive sensing and random filtering-...

Full description

Saved in:
Bibliographic Details
Main Authors: Senay, Seda, Chaparro, Luis F., Sun, Mingui, Sclabassi, Robert J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Senay, Seda
Chaparro, Luis F.
Sun, Mingui
Sclabassi, Robert J.
description Electroencephalography (EEG) is a major tool for clinical diagnosis of neurological diseases and brain research. EEGs are often collected over numerous channels and trials, providing large data sets that require efficient collection and accurate compression. Compressive sensing and random filtering-emphasizing signal "sparseness"- enable the reconstruction of signals from a small set of measurements, at the expense of computationally complex reconstruction algorithms. In this paper we show that using Slepian functions, rather than sinc functions, in sampling reduces the minimum Nyquist sampling rate without aliasing. Assuming non-uniform sampling our procedure can be connected with compressive sensing and random filtering. EEG signals are well projected onto a Slepian basis consisting of finite-support functions, with energy optimally concentrated in a band, and related to the sinc function. Our procedure is illustrated using subdural EEG signals, with better performance than that from the conventional compressive sensing and random filtering, without the complex reconstruction of those methods.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7080403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7080403</ieee_id><sourcerecordid>7080403</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-238ab2598dcfd5fb9fad3f7a3b8605244acc6c4b9f2c4e389fc82a9e7b1361df3</originalsourceid><addsrcrecordid>eNpNjMtqwzAUREVpoSHNF3SjHzDIetjSMhg3LQ1k0ezDlXQVFGzZSGmhf1_3sehmZjgzzA1ZcV6bSklT3_7L92RTyoUxJjgTijcr8tpN45yxlPiBtGAqMZ0pJE_zItNIQxyumL_hFGjf72iJ5wRDoe8_y7cB5wiJWiixPJC7sFS4-fM1OT71x-652h92L912X0XDrhUXGixXRnsXvArWBPAitCCsbpjiUoJzjZML506i0CY4zcFga2vR1D6INXn8vY2IeJpzHCF_nlqmmWRCfAG690hu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compressive sensing and random filtering of EEG signals using Slepian basis</title><source>IEEE Xplore All Conference Series</source><creator>Senay, Seda ; Chaparro, Luis F. ; Sun, Mingui ; Sclabassi, Robert J.</creator><creatorcontrib>Senay, Seda ; Chaparro, Luis F. ; Sun, Mingui ; Sclabassi, Robert J.</creatorcontrib><description>Electroencephalography (EEG) is a major tool for clinical diagnosis of neurological diseases and brain research. EEGs are often collected over numerous channels and trials, providing large data sets that require efficient collection and accurate compression. Compressive sensing and random filtering-emphasizing signal "sparseness"- enable the reconstruction of signals from a small set of measurements, at the expense of computationally complex reconstruction algorithms. In this paper we show that using Slepian functions, rather than sinc functions, in sampling reduces the minimum Nyquist sampling rate without aliasing. Assuming non-uniform sampling our procedure can be connected with compressive sensing and random filtering. EEG signals are well projected onto a Slepian basis consisting of finite-support functions, with energy optimally concentrated in a band, and related to the sinc function. Our procedure is illustrated using subdural EEG signals, with better performance than that from the conventional compressive sensing and random filtering, without the complex reconstruction of those methods.</description><identifier>ISSN: 2219-5491</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Electroencephalography ; Europe ; Filtering ; Signal processing ; Sparse matrices ; Uncertainty</subject><ispartof>2008 16th European Signal Processing Conference, 2008, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7080403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7080403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Senay, Seda</creatorcontrib><creatorcontrib>Chaparro, Luis F.</creatorcontrib><creatorcontrib>Sun, Mingui</creatorcontrib><creatorcontrib>Sclabassi, Robert J.</creatorcontrib><title>Compressive sensing and random filtering of EEG signals using Slepian basis</title><title>2008 16th European Signal Processing Conference</title><addtitle>EUSIPCO</addtitle><description>Electroencephalography (EEG) is a major tool for clinical diagnosis of neurological diseases and brain research. EEGs are often collected over numerous channels and trials, providing large data sets that require efficient collection and accurate compression. Compressive sensing and random filtering-emphasizing signal "sparseness"- enable the reconstruction of signals from a small set of measurements, at the expense of computationally complex reconstruction algorithms. In this paper we show that using Slepian functions, rather than sinc functions, in sampling reduces the minimum Nyquist sampling rate without aliasing. Assuming non-uniform sampling our procedure can be connected with compressive sensing and random filtering. EEG signals are well projected onto a Slepian basis consisting of finite-support functions, with energy optimally concentrated in a band, and related to the sinc function. Our procedure is illustrated using subdural EEG signals, with better performance than that from the conventional compressive sensing and random filtering, without the complex reconstruction of those methods.</description><subject>Compressed sensing</subject><subject>Electroencephalography</subject><subject>Europe</subject><subject>Filtering</subject><subject>Signal processing</subject><subject>Sparse matrices</subject><subject>Uncertainty</subject><issn>2219-5491</issn><issn>2219-5491</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjMtqwzAUREVpoSHNF3SjHzDIetjSMhg3LQ1k0ezDlXQVFGzZSGmhf1_3sehmZjgzzA1ZcV6bSklT3_7L92RTyoUxJjgTijcr8tpN45yxlPiBtGAqMZ0pJE_zItNIQxyumL_hFGjf72iJ5wRDoe8_y7cB5wiJWiixPJC7sFS4-fM1OT71x-652h92L912X0XDrhUXGixXRnsXvArWBPAitCCsbpjiUoJzjZML506i0CY4zcFga2vR1D6INXn8vY2IeJpzHCF_nlqmmWRCfAG690hu</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Senay, Seda</creator><creator>Chaparro, Luis F.</creator><creator>Sun, Mingui</creator><creator>Sclabassi, Robert J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200808</creationdate><title>Compressive sensing and random filtering of EEG signals using Slepian basis</title><author>Senay, Seda ; Chaparro, Luis F. ; Sun, Mingui ; Sclabassi, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-238ab2598dcfd5fb9fad3f7a3b8605244acc6c4b9f2c4e389fc82a9e7b1361df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Compressed sensing</topic><topic>Electroencephalography</topic><topic>Europe</topic><topic>Filtering</topic><topic>Signal processing</topic><topic>Sparse matrices</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Senay, Seda</creatorcontrib><creatorcontrib>Chaparro, Luis F.</creatorcontrib><creatorcontrib>Sun, Mingui</creatorcontrib><creatorcontrib>Sclabassi, Robert J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Senay, Seda</au><au>Chaparro, Luis F.</au><au>Sun, Mingui</au><au>Sclabassi, Robert J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compressive sensing and random filtering of EEG signals using Slepian basis</atitle><btitle>2008 16th European Signal Processing Conference</btitle><stitle>EUSIPCO</stitle><date>2008-08</date><risdate>2008</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><abstract>Electroencephalography (EEG) is a major tool for clinical diagnosis of neurological diseases and brain research. EEGs are often collected over numerous channels and trials, providing large data sets that require efficient collection and accurate compression. Compressive sensing and random filtering-emphasizing signal "sparseness"- enable the reconstruction of signals from a small set of measurements, at the expense of computationally complex reconstruction algorithms. In this paper we show that using Slepian functions, rather than sinc functions, in sampling reduces the minimum Nyquist sampling rate without aliasing. Assuming non-uniform sampling our procedure can be connected with compressive sensing and random filtering. EEG signals are well projected onto a Slepian basis consisting of finite-support functions, with energy optimally concentrated in a band, and related to the sinc function. Our procedure is illustrated using subdural EEG signals, with better performance than that from the conventional compressive sensing and random filtering, without the complex reconstruction of those methods.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2008 16th European Signal Processing Conference, 2008, p.1-5
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_7080403
source IEEE Xplore All Conference Series
subjects Compressed sensing
Electroencephalography
Europe
Filtering
Signal processing
Sparse matrices
Uncertainty
title Compressive sensing and random filtering of EEG signals using Slepian basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compressive%20sensing%20and%20random%20filtering%20of%20EEG%20signals%20using%20Slepian%20basis&rft.btitle=2008%2016th%20European%20Signal%20Processing%20Conference&rft.au=Senay,%20Seda&rft.date=2008-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2219-5491&rft.eissn=2219-5491&rft_id=info:doi/&rft_dat=%3Cieee_CHZPO%3E7080403%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-238ab2598dcfd5fb9fad3f7a3b8605244acc6c4b9f2c4e389fc82a9e7b1361df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7080403&rfr_iscdi=true