Loading…
A Low-Power Hybrid RO PUF With Improved Thermal Stability for Lightweight Applications
Ring oscillator (RO)-based physical unclonable function (PUF) is resilient against noise impacts, but its response is susceptible to temperature variations. This paper presents a low-power and small footprint hybrid RO PUF with a very high temperature stability, which makes it an ideal candidate for...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2015-07, Vol.34 (7), p.1143-1147 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ring oscillator (RO)-based physical unclonable function (PUF) is resilient against noise impacts, but its response is susceptible to temperature variations. This paper presents a low-power and small footprint hybrid RO PUF with a very high temperature stability, which makes it an ideal candidate for lightweight applications. The negative temperature coefficient of the low-power subthreshold operation of current starved inverters is exploited to mitigate the variations of differential RO frequencies with temperature. The new architecture uses conspicuously simplified circuitries to generate and compare a large number of pairs of RO frequencies. The proposed nine-stage hybrid RO PUF was fabricated using global foundry 65-nm CMOS technology. The PUF occupies only 250 μm 2 of chip area and consumes only 32.3 μW per challenge response pair at 1.2 V and 230 MHz. The measured average and worst-case reliability of its responses are 99.84% and 97.28%, respectively, over a wide range of temperature from -40 to 120 °C. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2015.2424955 |