Loading…
A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool
Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conve...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1228 |
container_issue | |
container_start_page | 1225 |
container_title | |
container_volume | |
creator | Afacan, Engin Berkol, Gonenc Pusane, Ali Emre Dundar, Gunhan Baskaya, Faik |
description | Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions. |
doi_str_mv | 10.7873/DATE.2015.0656 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7092575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7092575</ieee_id><sourcerecordid>7092575</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413</originalsourceid><addsrcrecordid>eNotjMtOwzAQAA0CiarkyoWLfyBhN-5m7WNUykMqQki9V47jtEZpjJxUqHw9IDjNHEYjxA1CwZrV3X29WRUlIBVQUXUmMsNaGY2kGIjOxQyJdI4IePHrCnIkg1ciG8d3AMCqUgZ4Jta13J-aFFr5drRjkC9xmLxc2tRHefDTPrayi0megu9baT9t8tIOto876UJyxzDJMXyFYSenGPtrcdnZfvTZP-di87DaLJ_y9evj87Je58HAlDel4YVm0FBZKp1pnAWtuCNsPCGVYI23xJViBz-tb1VjlOo8NeiYF6jm4vZvG7z3248UDjadtgymJCb1DTarTm0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><source>IEEE Xplore All Conference Series</source><creator>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</creator><creatorcontrib>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</creatorcontrib><description>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</description><identifier>ISSN: 1530-1591</identifier><identifier>EISSN: 1558-1101</identifier><identifier>EISBN: 9783981537055</identifier><identifier>EISBN: 3981537041</identifier><identifier>EISBN: 398153705X</identifier><identifier>EISBN: 9783981537048</identifier><identifier>DOI: 10.7873/DATE.2015.0656</identifier><language>eng</language><publisher>EDAA</publisher><subject>Analog circuits ; Monte Carlo methods ; Optimization ; Sociology ; Yield estimation</subject><ispartof>2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, p.1225-1228</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7092575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7092575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Afacan, Engin</creatorcontrib><creatorcontrib>Berkol, Gonenc</creatorcontrib><creatorcontrib>Pusane, Ali Emre</creatorcontrib><creatorcontrib>Dundar, Gunhan</creatorcontrib><creatorcontrib>Baskaya, Faik</creatorcontrib><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><title>2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)</title><addtitle>DATE</addtitle><description>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</description><subject>Analog circuits</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Yield estimation</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>9783981537055</isbn><isbn>3981537041</isbn><isbn>398153705X</isbn><isbn>9783981537048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOwzAQAA0CiarkyoWLfyBhN-5m7WNUykMqQki9V47jtEZpjJxUqHw9IDjNHEYjxA1CwZrV3X29WRUlIBVQUXUmMsNaGY2kGIjOxQyJdI4IePHrCnIkg1ciG8d3AMCqUgZ4Jta13J-aFFr5drRjkC9xmLxc2tRHefDTPrayi0megu9baT9t8tIOto876UJyxzDJMXyFYSenGPtrcdnZfvTZP-di87DaLJ_y9evj87Je58HAlDel4YVm0FBZKp1pnAWtuCNsPCGVYI23xJViBz-tb1VjlOo8NeiYF6jm4vZvG7z3248UDjadtgymJCb1DTarTm0</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Afacan, Engin</creator><creator>Berkol, Gonenc</creator><creator>Pusane, Ali Emre</creator><creator>Dundar, Gunhan</creator><creator>Baskaya, Faik</creator><general>EDAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201503</creationdate><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><author>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analog circuits</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Afacan, Engin</creatorcontrib><creatorcontrib>Berkol, Gonenc</creatorcontrib><creatorcontrib>Pusane, Ali Emre</creatorcontrib><creatorcontrib>Dundar, Gunhan</creatorcontrib><creatorcontrib>Baskaya, Faik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Afacan, Engin</au><au>Berkol, Gonenc</au><au>Pusane, Ali Emre</au><au>Dundar, Gunhan</au><au>Baskaya, Faik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</atitle><btitle>2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)</btitle><stitle>DATE</stitle><date>2015-03</date><risdate>2015</risdate><spage>1225</spage><epage>1228</epage><pages>1225-1228</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><eisbn>9783981537055</eisbn><eisbn>3981537041</eisbn><eisbn>398153705X</eisbn><eisbn>9783981537048</eisbn><abstract>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</abstract><pub>EDAA</pub><doi>10.7873/DATE.2015.0656</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1591 |
ispartof | 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, p.1225-1228 |
issn | 1530-1591 1558-1101 |
language | eng |
recordid | cdi_ieee_primary_7092575 |
source | IEEE Xplore All Conference Series |
subjects | Analog circuits Monte Carlo methods Optimization Sociology Yield estimation |
title | A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20Quasi%20Monte%20Carlo%20method%20for%20yield%20aware%20analog%20circuit%20sizing%20tool&rft.btitle=2015%20Design,%20Automation%20&%20Test%20in%20Europe%20Conference%20&%20Exhibition%20(DATE)&rft.au=Afacan,%20Engin&rft.date=2015-03&rft.spage=1225&rft.epage=1228&rft.pages=1225-1228&rft.issn=1530-1591&rft.eissn=1558-1101&rft_id=info:doi/10.7873/DATE.2015.0656&rft.eisbn=9783981537055&rft.eisbn_list=3981537041&rft.eisbn_list=398153705X&rft.eisbn_list=9783981537048&rft_dat=%3Cieee_CHZPO%3E7092575%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7092575&rfr_iscdi=true |