Loading…

A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool

Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conve...

Full description

Saved in:
Bibliographic Details
Main Authors: Afacan, Engin, Berkol, Gonenc, Pusane, Ali Emre, Dundar, Gunhan, Baskaya, Faik
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1228
container_issue
container_start_page 1225
container_title
container_volume
creator Afacan, Engin
Berkol, Gonenc
Pusane, Ali Emre
Dundar, Gunhan
Baskaya, Faik
description Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.
doi_str_mv 10.7873/DATE.2015.0656
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7092575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7092575</ieee_id><sourcerecordid>7092575</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413</originalsourceid><addsrcrecordid>eNotjMtOwzAQAA0CiarkyoWLfyBhN-5m7WNUykMqQki9V47jtEZpjJxUqHw9IDjNHEYjxA1CwZrV3X29WRUlIBVQUXUmMsNaGY2kGIjOxQyJdI4IePHrCnIkg1ciG8d3AMCqUgZ4Jta13J-aFFr5drRjkC9xmLxc2tRHefDTPrayi0megu9baT9t8tIOto876UJyxzDJMXyFYSenGPtrcdnZfvTZP-di87DaLJ_y9evj87Je58HAlDel4YVm0FBZKp1pnAWtuCNsPCGVYI23xJViBz-tb1VjlOo8NeiYF6jm4vZvG7z3248UDjadtgymJCb1DTarTm0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><source>IEEE Xplore All Conference Series</source><creator>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</creator><creatorcontrib>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</creatorcontrib><description>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</description><identifier>ISSN: 1530-1591</identifier><identifier>EISSN: 1558-1101</identifier><identifier>EISBN: 9783981537055</identifier><identifier>EISBN: 3981537041</identifier><identifier>EISBN: 398153705X</identifier><identifier>EISBN: 9783981537048</identifier><identifier>DOI: 10.7873/DATE.2015.0656</identifier><language>eng</language><publisher>EDAA</publisher><subject>Analog circuits ; Monte Carlo methods ; Optimization ; Sociology ; Yield estimation</subject><ispartof>2015 Design, Automation &amp; Test in Europe Conference &amp; Exhibition (DATE), 2015, p.1225-1228</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7092575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7092575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Afacan, Engin</creatorcontrib><creatorcontrib>Berkol, Gonenc</creatorcontrib><creatorcontrib>Pusane, Ali Emre</creatorcontrib><creatorcontrib>Dundar, Gunhan</creatorcontrib><creatorcontrib>Baskaya, Faik</creatorcontrib><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><title>2015 Design, Automation &amp; Test in Europe Conference &amp; Exhibition (DATE)</title><addtitle>DATE</addtitle><description>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</description><subject>Analog circuits</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Yield estimation</subject><issn>1530-1591</issn><issn>1558-1101</issn><isbn>9783981537055</isbn><isbn>3981537041</isbn><isbn>398153705X</isbn><isbn>9783981537048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOwzAQAA0CiarkyoWLfyBhN-5m7WNUykMqQki9V47jtEZpjJxUqHw9IDjNHEYjxA1CwZrV3X29WRUlIBVQUXUmMsNaGY2kGIjOxQyJdI4IePHrCnIkg1ciG8d3AMCqUgZ4Jta13J-aFFr5drRjkC9xmLxc2tRHefDTPrayi0megu9baT9t8tIOto876UJyxzDJMXyFYSenGPtrcdnZfvTZP-di87DaLJ_y9evj87Je58HAlDel4YVm0FBZKp1pnAWtuCNsPCGVYI23xJViBz-tb1VjlOo8NeiYF6jm4vZvG7z3248UDjadtgymJCb1DTarTm0</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Afacan, Engin</creator><creator>Berkol, Gonenc</creator><creator>Pusane, Ali Emre</creator><creator>Dundar, Gunhan</creator><creator>Baskaya, Faik</creator><general>EDAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201503</creationdate><title>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</title><author>Afacan, Engin ; Berkol, Gonenc ; Pusane, Ali Emre ; Dundar, Gunhan ; Baskaya, Faik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analog circuits</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Yield estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Afacan, Engin</creatorcontrib><creatorcontrib>Berkol, Gonenc</creatorcontrib><creatorcontrib>Pusane, Ali Emre</creatorcontrib><creatorcontrib>Dundar, Gunhan</creatorcontrib><creatorcontrib>Baskaya, Faik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Afacan, Engin</au><au>Berkol, Gonenc</au><au>Pusane, Ali Emre</au><au>Dundar, Gunhan</au><au>Baskaya, Faik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool</atitle><btitle>2015 Design, Automation &amp; Test in Europe Conference &amp; Exhibition (DATE)</btitle><stitle>DATE</stitle><date>2015-03</date><risdate>2015</risdate><spage>1225</spage><epage>1228</epage><pages>1225-1228</pages><issn>1530-1591</issn><eissn>1558-1101</eissn><eisbn>9783981537055</eisbn><eisbn>3981537041</eisbn><eisbn>398153705X</eisbn><eisbn>9783981537048</eisbn><abstract>Efficient yield estimation methods are required by yield aware automatic sizing tools, where many iterative variability analyses are performed. Quasi Monte Carlo (QMC) is a popular approach, in which samples are generated more homogeneously, hence faster convergence is obtained compared to the conventional MC. However, since QMC is deterministic and has no natural variance, there is no convenient way to obtain estimation error bounds. To determine the confidence interval of the estimated yield, scrambled QMC, in which samples are randomly permuted, is run multiple times to obtain stochastic variance by sacrificing computational cost. To palliate this challenge, this paper proposes a hybrid method, where a single QMC is performed to determine infeasible solutions in terms of yield, which is followed by a few scrambled QMC analyses providing variance and confidence interval of the estimated yield. Yield optimization is performed considering the worst case of the current estimation, thus the optimizer guarantees that the solution will satisfy the confidence interval. Furthermore, a yield ranking mechanism is also developed to enforce the optimizer to search for more robust solutions.</abstract><pub>EDAA</pub><doi>10.7873/DATE.2015.0656</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1591
ispartof 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, p.1225-1228
issn 1530-1591
1558-1101
language eng
recordid cdi_ieee_primary_7092575
source IEEE Xplore All Conference Series
subjects Analog circuits
Monte Carlo methods
Optimization
Sociology
Yield estimation
title A hybrid Quasi Monte Carlo method for yield aware analog circuit sizing tool
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20Quasi%20Monte%20Carlo%20method%20for%20yield%20aware%20analog%20circuit%20sizing%20tool&rft.btitle=2015%20Design,%20Automation%20&%20Test%20in%20Europe%20Conference%20&%20Exhibition%20(DATE)&rft.au=Afacan,%20Engin&rft.date=2015-03&rft.spage=1225&rft.epage=1228&rft.pages=1225-1228&rft.issn=1530-1591&rft.eissn=1558-1101&rft_id=info:doi/10.7873/DATE.2015.0656&rft.eisbn=9783981537055&rft.eisbn_list=3981537041&rft.eisbn_list=398153705X&rft.eisbn_list=9783981537048&rft_dat=%3Cieee_CHZPO%3E7092575%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b2974870806a52c9bca0837f51be51520a9ea57637c0b29ed3b933fe5b1c77413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7092575&rfr_iscdi=true