Loading…
Big data clustering via random sketching and validation
As the number and dimensionality of data increases, development of new efficient processing tools has become a necessity. The present paper introduces a novel dimensionality reduction approach for fast and efficient clustering of high-dimensional data. The new methods extend random sampling and cons...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1050 |
container_issue | |
container_start_page | 1046 |
container_title | |
container_volume | |
creator | Traganitis, Panagiotis A. Slavakis, Konstantinos Giannakis, Georgios B. |
description | As the number and dimensionality of data increases, development of new efficient processing tools has become a necessity. The present paper introduces a novel dimensionality reduction approach for fast and efficient clustering of high-dimensional data. The new methods extend random sampling and consensus (RANSAC) arguments, originally developed for robust regression tasks in computer vision, to the dimensionality reduction problem. The advocated random sketching and validation K-means (SkeVa K-means) and Divergence SkeVa algorithms can achieve high performance, with the latter being able to afford lower computational footprint than the former. Extensive numerical tests on synthetic and real datasets highlight the potential of the proposed algorithms, and demonstrate their competitive performance relative to state-of-the-art random projection alternatives. |
doi_str_mv | 10.1109/ACSSC.2014.7094614 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7094614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7094614</ieee_id><sourcerecordid>7094614</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-aa6395a6a635a223e486c311aeb9e66ba1f341b031403a0ff6e5ea37b9188fd53</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsNa-gG7mBRLvnTu_yxq0CgUX1XW5SSZ1NE0liQXf3ohdfZzDx4EjxA1CjgjhbllsNkWuAHXuIGiL-kwsgvOoXQheBQPnYqaMs5kioEtxNQwfAAqUVzPh7tNO1jyyrNrvYYx96nbymFj23NWHvRw-41i9_5VTlkdu0ySnQ3ctLhpuh7g4cS7eHh9ei6ds_bJ6LpbrLCnwY8ZsKRi2EwwrRVF7WxEixzJEa0vGhjSWQKiBGJrGRhOZXBnQ-6Y2NBe3_7spxrj96tOe-5_t6Sf9AgtjRkU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Big data clustering via random sketching and validation</title><source>IEEE Xplore All Conference Series</source><creator>Traganitis, Panagiotis A. ; Slavakis, Konstantinos ; Giannakis, Georgios B.</creator><creatorcontrib>Traganitis, Panagiotis A. ; Slavakis, Konstantinos ; Giannakis, Georgios B.</creatorcontrib><description>As the number and dimensionality of data increases, development of new efficient processing tools has become a necessity. The present paper introduces a novel dimensionality reduction approach for fast and efficient clustering of high-dimensional data. The new methods extend random sampling and consensus (RANSAC) arguments, originally developed for robust regression tasks in computer vision, to the dimensionality reduction problem. The advocated random sketching and validation K-means (SkeVa K-means) and Divergence SkeVa algorithms can achieve high performance, with the latter being able to afford lower computational footprint than the former. Extensive numerical tests on synthetic and real datasets highlight the potential of the proposed algorithms, and demonstrate their competitive performance relative to state-of-the-art random projection alternatives.</description><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781479982950</identifier><identifier>EISBN: 9781479982974</identifier><identifier>EISBN: 1479982954</identifier><identifier>EISBN: 1479982970</identifier><identifier>DOI: 10.1109/ACSSC.2014.7094614</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; big data ; Clustering ; Clustering algorithms ; Complexity theory ; Computer vision ; Data models ; feature selection ; high-dimensional data ; K-means ; Kernel ; random sampling and consensus ; random sketching and validation ; Robustness</subject><ispartof>2014 48th Asilomar Conference on Signals, Systems and Computers, 2014, p.1046-1050</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7094614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7094614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Traganitis, Panagiotis A.</creatorcontrib><creatorcontrib>Slavakis, Konstantinos</creatorcontrib><creatorcontrib>Giannakis, Georgios B.</creatorcontrib><title>Big data clustering via random sketching and validation</title><title>2014 48th Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>As the number and dimensionality of data increases, development of new efficient processing tools has become a necessity. The present paper introduces a novel dimensionality reduction approach for fast and efficient clustering of high-dimensional data. The new methods extend random sampling and consensus (RANSAC) arguments, originally developed for robust regression tasks in computer vision, to the dimensionality reduction problem. The advocated random sketching and validation K-means (SkeVa K-means) and Divergence SkeVa algorithms can achieve high performance, with the latter being able to afford lower computational footprint than the former. Extensive numerical tests on synthetic and real datasets highlight the potential of the proposed algorithms, and demonstrate their competitive performance relative to state-of-the-art random projection alternatives.</description><subject>Accuracy</subject><subject>big data</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Data models</subject><subject>feature selection</subject><subject>high-dimensional data</subject><subject>K-means</subject><subject>Kernel</subject><subject>random sampling and consensus</subject><subject>random sketching and validation</subject><subject>Robustness</subject><issn>2576-2303</issn><isbn>9781479982950</isbn><isbn>9781479982974</isbn><isbn>1479982954</isbn><isbn>1479982970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsNa-gG7mBRLvnTu_yxq0CgUX1XW5SSZ1NE0liQXf3ohdfZzDx4EjxA1CjgjhbllsNkWuAHXuIGiL-kwsgvOoXQheBQPnYqaMs5kioEtxNQwfAAqUVzPh7tNO1jyyrNrvYYx96nbymFj23NWHvRw-41i9_5VTlkdu0ySnQ3ctLhpuh7g4cS7eHh9ei6ds_bJ6LpbrLCnwY8ZsKRi2EwwrRVF7WxEixzJEa0vGhjSWQKiBGJrGRhOZXBnQ-6Y2NBe3_7spxrj96tOe-5_t6Sf9AgtjRkU</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Traganitis, Panagiotis A.</creator><creator>Slavakis, Konstantinos</creator><creator>Giannakis, Georgios B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20141101</creationdate><title>Big data clustering via random sketching and validation</title><author>Traganitis, Panagiotis A. ; Slavakis, Konstantinos ; Giannakis, Georgios B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-aa6395a6a635a223e486c311aeb9e66ba1f341b031403a0ff6e5ea37b9188fd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>big data</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Data models</topic><topic>feature selection</topic><topic>high-dimensional data</topic><topic>K-means</topic><topic>Kernel</topic><topic>random sampling and consensus</topic><topic>random sketching and validation</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Traganitis, Panagiotis A.</creatorcontrib><creatorcontrib>Slavakis, Konstantinos</creatorcontrib><creatorcontrib>Giannakis, Georgios B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Traganitis, Panagiotis A.</au><au>Slavakis, Konstantinos</au><au>Giannakis, Georgios B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Big data clustering via random sketching and validation</atitle><btitle>2014 48th Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2014-11-01</date><risdate>2014</risdate><spage>1046</spage><epage>1050</epage><pages>1046-1050</pages><eissn>2576-2303</eissn><eisbn>9781479982950</eisbn><eisbn>9781479982974</eisbn><eisbn>1479982954</eisbn><eisbn>1479982970</eisbn><abstract>As the number and dimensionality of data increases, development of new efficient processing tools has become a necessity. The present paper introduces a novel dimensionality reduction approach for fast and efficient clustering of high-dimensional data. The new methods extend random sampling and consensus (RANSAC) arguments, originally developed for robust regression tasks in computer vision, to the dimensionality reduction problem. The advocated random sketching and validation K-means (SkeVa K-means) and Divergence SkeVa algorithms can achieve high performance, with the latter being able to afford lower computational footprint than the former. Extensive numerical tests on synthetic and real datasets highlight the potential of the proposed algorithms, and demonstrate their competitive performance relative to state-of-the-art random projection alternatives.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2014.7094614</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-2303 |
ispartof | 2014 48th Asilomar Conference on Signals, Systems and Computers, 2014, p.1046-1050 |
issn | 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_7094614 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy big data Clustering Clustering algorithms Complexity theory Computer vision Data models feature selection high-dimensional data K-means Kernel random sampling and consensus random sketching and validation Robustness |
title | Big data clustering via random sketching and validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Big%20data%20clustering%20via%20random%20sketching%20and%20validation&rft.btitle=2014%2048th%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Traganitis,%20Panagiotis%20A.&rft.date=2014-11-01&rft.spage=1046&rft.epage=1050&rft.pages=1046-1050&rft.eissn=2576-2303&rft_id=info:doi/10.1109/ACSSC.2014.7094614&rft.eisbn=9781479982950&rft.eisbn_list=9781479982974&rft.eisbn_list=1479982954&rft.eisbn_list=1479982970&rft_dat=%3Cieee_CHZPO%3E7094614%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-aa6395a6a635a223e486c311aeb9e66ba1f341b031403a0ff6e5ea37b9188fd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7094614&rfr_iscdi=true |