Loading…

Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning

In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2015-10, Vol.62 (10), p.2421-2433
Main Authors: Song, Youyi, Zhang, Ling, Chen, Siping, Ni, Dong, Lei, Baiying, Wang, Tianfu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813
cites cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813
container_end_page 2433
container_issue 10
container_start_page 2421
container_title IEEE transactions on biomedical engineering
container_volume 62
creator Song, Youyi
Zhang, Ling
Chen, Siping
Ni, Dong
Lei, Baiying
Wang, Tianfu
description In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.
doi_str_mv 10.1109/TBME.2015.2430895
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7103332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7103332</ieee_id><sourcerecordid>1715915557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</originalsourceid><addsrcrecordid>eNpdkc1O3DAURi1UBMPQB0CVKkvdsMngnzi2lxBRQAJaCbqOHOcGQpN4sB0Qb1-nM7BgZVn3fJ98fRA6omRFKdEn92c35ytGqFixnBOlxQ5aUCFUxgSnX9CCEKoyzXS-jw5CeErXXOXFHtpnQhdFLskCvZ5aO3kTAd_BwwBjNLFzI3YtLsG_dNb0uHyLbt2bMGAzNvh2sj10-MwEaHAib6Y-diFxgEs3vrh-mgtS7Bbiq_N__4cuvFk_4t_Gx26eduPDIdptTR_g6_Zcoj8_z-_Ly-z618VVeXqd2bzgMRONVLblWpNWM9VYndOWFqxmkrZcNtQIyUFp25DaqoaIujVKQFFzTYSUivIlOt70rr17niDEakivhb43I7gpVFRSodOfpZ4l-vEJfXKTT6vMFNOJ1Jonim4o610IHtpq7bvB-LeKkmq2Us1WqtlKtbWSMt-3zVM9QPOReNeQgG8boAOAj7GkhHPO-D9piZEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729171993</pqid></control><display><type>article</type><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><source>IEEE Xplore All Conference Series</source><creator>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</creator><creatorcontrib>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</creatorcontrib><description>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2015.2430895</identifier><identifier>PMID: 25966470</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cell Nucleus - chemistry ; Cervical segmentation ; Cervix Uteri - cytology ; Cervix Uteri - pathology ; coarse to fine ; Computer architecture ; Cytoplasm - chemistry ; Feature extraction ; Female ; graph-partitioning ; Histocytochemistry ; Humans ; Image color analysis ; Image edge detection ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Microprocessors ; Microscopy ; multi-scale convolutional network ; Shape ; touching-cell splitting</subject><ispartof>IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2421-2433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</citedby><cites>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7103332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7103332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Youyi</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Siping</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</description><subject>Cell Nucleus - chemistry</subject><subject>Cervical segmentation</subject><subject>Cervix Uteri - cytology</subject><subject>Cervix Uteri - pathology</subject><subject>coarse to fine</subject><subject>Computer architecture</subject><subject>Cytoplasm - chemistry</subject><subject>Feature extraction</subject><subject>Female</subject><subject>graph-partitioning</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>multi-scale convolutional network</subject><subject>Shape</subject><subject>touching-cell splitting</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1O3DAURi1UBMPQB0CVKkvdsMngnzi2lxBRQAJaCbqOHOcGQpN4sB0Qb1-nM7BgZVn3fJ98fRA6omRFKdEn92c35ytGqFixnBOlxQ5aUCFUxgSnX9CCEKoyzXS-jw5CeErXXOXFHtpnQhdFLskCvZ5aO3kTAd_BwwBjNLFzI3YtLsG_dNb0uHyLbt2bMGAzNvh2sj10-MwEaHAib6Y-diFxgEs3vrh-mgtS7Bbiq_N__4cuvFk_4t_Gx26eduPDIdptTR_g6_Zcoj8_z-_Ly-z618VVeXqd2bzgMRONVLblWpNWM9VYndOWFqxmkrZcNtQIyUFp25DaqoaIujVKQFFzTYSUivIlOt70rr17niDEakivhb43I7gpVFRSodOfpZ4l-vEJfXKTT6vMFNOJ1Jonim4o610IHtpq7bvB-LeKkmq2Us1WqtlKtbWSMt-3zVM9QPOReNeQgG8boAOAj7GkhHPO-D9piZEW</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Song, Youyi</creator><creator>Zhang, Ling</creator><creator>Chen, Siping</creator><creator>Ni, Dong</creator><creator>Lei, Baiying</creator><creator>Wang, Tianfu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><author>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Nucleus - chemistry</topic><topic>Cervical segmentation</topic><topic>Cervix Uteri - cytology</topic><topic>Cervix Uteri - pathology</topic><topic>coarse to fine</topic><topic>Computer architecture</topic><topic>Cytoplasm - chemistry</topic><topic>Feature extraction</topic><topic>Female</topic><topic>graph-partitioning</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>multi-scale convolutional network</topic><topic>Shape</topic><topic>touching-cell splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Youyi</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Siping</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Youyi</au><au>Zhang, Ling</au><au>Chen, Siping</au><au>Ni, Dong</au><au>Lei, Baiying</au><au>Wang, Tianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2015-10</date><risdate>2015</risdate><volume>62</volume><issue>10</issue><spage>2421</spage><epage>2433</epage><pages>2421-2433</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25966470</pmid><doi>10.1109/TBME.2015.2430895</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2421-2433
issn 0018-9294
1558-2531
language eng
recordid cdi_ieee_primary_7103332
source IEEE Xplore All Conference Series
subjects Cell Nucleus - chemistry
Cervical segmentation
Cervix Uteri - cytology
Cervix Uteri - pathology
coarse to fine
Computer architecture
Cytoplasm - chemistry
Feature extraction
Female
graph-partitioning
Histocytochemistry
Humans
Image color analysis
Image edge detection
Image Processing, Computer-Assisted - methods
Image segmentation
Microprocessors
Microscopy
multi-scale convolutional network
Shape
touching-cell splitting
title Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Segmentation%20of%20Cervical%20Cytoplasm%20and%20Nuclei%20Based%20on%20Multiscale%20Convolutional%20Network%20and%20Graph%20Partitioning&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Song,%20Youyi&rft.date=2015-10&rft.volume=62&rft.issue=10&rft.spage=2421&rft.epage=2433&rft.pages=2421-2433&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2015.2430895&rft_dat=%3Cproquest_CHZPO%3E1715915557%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1729171993&rft_id=info:pmid/25966470&rft_ieee_id=7103332&rfr_iscdi=true