Loading…
Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pi...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2015-10, Vol.62 (10), p.2421-2433 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813 |
container_end_page | 2433 |
container_issue | 10 |
container_start_page | 2421 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 62 |
creator | Song, Youyi Zhang, Ling Chen, Siping Ni, Dong Lei, Baiying Wang, Tianfu |
description | In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods. |
doi_str_mv | 10.1109/TBME.2015.2430895 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7103332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7103332</ieee_id><sourcerecordid>1715915557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</originalsourceid><addsrcrecordid>eNpdkc1O3DAURi1UBMPQB0CVKkvdsMngnzi2lxBRQAJaCbqOHOcGQpN4sB0Qb1-nM7BgZVn3fJ98fRA6omRFKdEn92c35ytGqFixnBOlxQ5aUCFUxgSnX9CCEKoyzXS-jw5CeErXXOXFHtpnQhdFLskCvZ5aO3kTAd_BwwBjNLFzI3YtLsG_dNb0uHyLbt2bMGAzNvh2sj10-MwEaHAib6Y-diFxgEs3vrh-mgtS7Bbiq_N__4cuvFk_4t_Gx26eduPDIdptTR_g6_Zcoj8_z-_Ly-z618VVeXqd2bzgMRONVLblWpNWM9VYndOWFqxmkrZcNtQIyUFp25DaqoaIujVKQFFzTYSUivIlOt70rr17niDEakivhb43I7gpVFRSodOfpZ4l-vEJfXKTT6vMFNOJ1Jonim4o610IHtpq7bvB-LeKkmq2Us1WqtlKtbWSMt-3zVM9QPOReNeQgG8boAOAj7GkhHPO-D9piZEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729171993</pqid></control><display><type>article</type><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><source>IEEE Xplore All Conference Series</source><creator>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</creator><creatorcontrib>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</creatorcontrib><description>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2015.2430895</identifier><identifier>PMID: 25966470</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cell Nucleus - chemistry ; Cervical segmentation ; Cervix Uteri - cytology ; Cervix Uteri - pathology ; coarse to fine ; Computer architecture ; Cytoplasm - chemistry ; Feature extraction ; Female ; graph-partitioning ; Histocytochemistry ; Humans ; Image color analysis ; Image edge detection ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Microprocessors ; Microscopy ; multi-scale convolutional network ; Shape ; touching-cell splitting</subject><ispartof>IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2421-2433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</citedby><cites>FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7103332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7103332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Youyi</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Siping</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</description><subject>Cell Nucleus - chemistry</subject><subject>Cervical segmentation</subject><subject>Cervix Uteri - cytology</subject><subject>Cervix Uteri - pathology</subject><subject>coarse to fine</subject><subject>Computer architecture</subject><subject>Cytoplasm - chemistry</subject><subject>Feature extraction</subject><subject>Female</subject><subject>graph-partitioning</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>multi-scale convolutional network</subject><subject>Shape</subject><subject>touching-cell splitting</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1O3DAURi1UBMPQB0CVKkvdsMngnzi2lxBRQAJaCbqOHOcGQpN4sB0Qb1-nM7BgZVn3fJ98fRA6omRFKdEn92c35ytGqFixnBOlxQ5aUCFUxgSnX9CCEKoyzXS-jw5CeErXXOXFHtpnQhdFLskCvZ5aO3kTAd_BwwBjNLFzI3YtLsG_dNb0uHyLbt2bMGAzNvh2sj10-MwEaHAib6Y-diFxgEs3vrh-mgtS7Bbiq_N__4cuvFk_4t_Gx26eduPDIdptTR_g6_Zcoj8_z-_Ly-z618VVeXqd2bzgMRONVLblWpNWM9VYndOWFqxmkrZcNtQIyUFp25DaqoaIujVKQFFzTYSUivIlOt70rr17niDEakivhb43I7gpVFRSodOfpZ4l-vEJfXKTT6vMFNOJ1Jonim4o610IHtpq7bvB-LeKkmq2Us1WqtlKtbWSMt-3zVM9QPOReNeQgG8boAOAj7GkhHPO-D9piZEW</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Song, Youyi</creator><creator>Zhang, Ling</creator><creator>Chen, Siping</creator><creator>Ni, Dong</creator><creator>Lei, Baiying</creator><creator>Wang, Tianfu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</title><author>Song, Youyi ; Zhang, Ling ; Chen, Siping ; Ni, Dong ; Lei, Baiying ; Wang, Tianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Nucleus - chemistry</topic><topic>Cervical segmentation</topic><topic>Cervix Uteri - cytology</topic><topic>Cervix Uteri - pathology</topic><topic>coarse to fine</topic><topic>Computer architecture</topic><topic>Cytoplasm - chemistry</topic><topic>Feature extraction</topic><topic>Female</topic><topic>graph-partitioning</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>multi-scale convolutional network</topic><topic>Shape</topic><topic>touching-cell splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Youyi</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Siping</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Youyi</au><au>Zhang, Ling</au><au>Chen, Siping</au><au>Ni, Dong</au><au>Lei, Baiying</au><au>Wang, Tianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2015-10</date><risdate>2015</risdate><volume>62</volume><issue>10</issue><spage>2421</spage><epage>2433</epage><pages>2421-2433</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25966470</pmid><doi>10.1109/TBME.2015.2430895</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2015-10, Vol.62 (10), p.2421-2433 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_ieee_primary_7103332 |
source | IEEE Xplore All Conference Series |
subjects | Cell Nucleus - chemistry Cervical segmentation Cervix Uteri - cytology Cervix Uteri - pathology coarse to fine Computer architecture Cytoplasm - chemistry Feature extraction Female graph-partitioning Histocytochemistry Humans Image color analysis Image edge detection Image Processing, Computer-Assisted - methods Image segmentation Microprocessors Microscopy multi-scale convolutional network Shape touching-cell splitting |
title | Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Segmentation%20of%20Cervical%20Cytoplasm%20and%20Nuclei%20Based%20on%20Multiscale%20Convolutional%20Network%20and%20Graph%20Partitioning&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Song,%20Youyi&rft.date=2015-10&rft.volume=62&rft.issue=10&rft.spage=2421&rft.epage=2433&rft.pages=2421-2433&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2015.2430895&rft_dat=%3Cproquest_CHZPO%3E1715915557%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-5d78cf3990f928dc941f162b271f37d1a573e89cd0bc8d05bfa85e6b390577813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1729171993&rft_id=info:pmid/25966470&rft_ieee_id=7103332&rfr_iscdi=true |