Loading…
Leveraging experience for large-scale LIDAR localisation in changing cities
Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3 |
---|---|
cites | |
container_end_page | 1691 |
container_issue | |
container_start_page | 1684 |
container_title | |
container_volume | |
creator | Maddern, Will Pascoe, Geoffrey Newman, Paul |
description | Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year. |
doi_str_mv | 10.1109/ICRA.2015.7139414 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7139414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7139414</ieee_id><sourcerecordid>7139414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhaMoOI7zAOImL5CanyZplqU6WiwIg4K74TZzUyO1HZoi-vYOOqvD-eB8i0PIteCZENzd1tWmzCQXOrNCuVzkJ2TlbCFy65xxUuWnZCG1tYwX9u2MLATXnOVWugtymdIH51wpYxbkqcEvnKCLQ0fxe49TxMEjDeNEe5g6ZMlDj7Sp78oN7cdDiQnmOA40DtS_w_C39HGOmK7IeYA-4eqYS_K6vn-pHlnz_FBXZcO8lGpmhQTJtXOhRRGcMbbwXlojQXsDYYegg1Vat6Y1wbXSc-Au3x2ob6WwAGpJbv69ERG3-yl-wvSzPf6gfgHd7k_t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><source>IEEE Xplore All Conference Series</source><creator>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</creator><creatorcontrib>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</creatorcontrib><description>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</description><identifier>ISSN: 1050-4729</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781479969234</identifier><identifier>EISBN: 1479969230</identifier><identifier>DOI: 10.1109/ICRA.2015.7139414</identifier><language>eng</language><publisher>IEEE</publisher><subject>Global Positioning System ; Laser radar ; Mobile robots ; Three-dimensional displays ; Trajectory ; Uncertainty ; Vehicles</subject><ispartof>2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, p.1684-1691</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7139414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7139414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maddern, Will</creatorcontrib><creatorcontrib>Pascoe, Geoffrey</creatorcontrib><creatorcontrib>Newman, Paul</creatorcontrib><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><title>2015 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</description><subject>Global Positioning System</subject><subject>Laser radar</subject><subject>Mobile robots</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781479969234</isbn><isbn>1479969230</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KxDAUhaMoOI7zAOImL5CanyZplqU6WiwIg4K74TZzUyO1HZoi-vYOOqvD-eB8i0PIteCZENzd1tWmzCQXOrNCuVzkJ2TlbCFy65xxUuWnZCG1tYwX9u2MLATXnOVWugtymdIH51wpYxbkqcEvnKCLQ0fxe49TxMEjDeNEe5g6ZMlDj7Sp78oN7cdDiQnmOA40DtS_w_C39HGOmK7IeYA-4eqYS_K6vn-pHlnz_FBXZcO8lGpmhQTJtXOhRRGcMbbwXlojQXsDYYegg1Vat6Y1wbXSc-Au3x2ob6WwAGpJbv69ERG3-yl-wvSzPf6gfgHd7k_t</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Maddern, Will</creator><creator>Pascoe, Geoffrey</creator><creator>Newman, Paul</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201505</creationdate><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><author>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Global Positioning System</topic><topic>Laser radar</topic><topic>Mobile robots</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Maddern, Will</creatorcontrib><creatorcontrib>Pascoe, Geoffrey</creatorcontrib><creatorcontrib>Newman, Paul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maddern, Will</au><au>Pascoe, Geoffrey</au><au>Newman, Paul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Leveraging experience for large-scale LIDAR localisation in changing cities</atitle><btitle>2015 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2015-05</date><risdate>2015</risdate><spage>1684</spage><epage>1691</epage><pages>1684-1691</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><eisbn>9781479969234</eisbn><eisbn>1479969230</eisbn><abstract>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2015.7139414</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, p.1684-1691 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_7139414 |
source | IEEE Xplore All Conference Series |
subjects | Global Positioning System Laser radar Mobile robots Three-dimensional displays Trajectory Uncertainty Vehicles |
title | Leveraging experience for large-scale LIDAR localisation in changing cities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Leveraging%20experience%20for%20large-scale%20LIDAR%20localisation%20in%20changing%20cities&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Maddern,%20Will&rft.date=2015-05&rft.spage=1684&rft.epage=1691&rft.pages=1684-1691&rft.issn=1050-4729&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA.2015.7139414&rft.eisbn=9781479969234&rft.eisbn_list=1479969230&rft_dat=%3Cieee_CHZPO%3E7139414%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7139414&rfr_iscdi=true |