Loading…

Leveraging experience for large-scale LIDAR localisation in changing cities

Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push...

Full description

Saved in:
Bibliographic Details
Main Authors: Maddern, Will, Pascoe, Geoffrey, Newman, Paul
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3
cites
container_end_page 1691
container_issue
container_start_page 1684
container_title
container_volume
creator Maddern, Will
Pascoe, Geoffrey
Newman, Paul
description Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.
doi_str_mv 10.1109/ICRA.2015.7139414
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7139414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7139414</ieee_id><sourcerecordid>7139414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhaMoOI7zAOImL5CanyZplqU6WiwIg4K74TZzUyO1HZoi-vYOOqvD-eB8i0PIteCZENzd1tWmzCQXOrNCuVzkJ2TlbCFy65xxUuWnZCG1tYwX9u2MLATXnOVWugtymdIH51wpYxbkqcEvnKCLQ0fxe49TxMEjDeNEe5g6ZMlDj7Sp78oN7cdDiQnmOA40DtS_w_C39HGOmK7IeYA-4eqYS_K6vn-pHlnz_FBXZcO8lGpmhQTJtXOhRRGcMbbwXlojQXsDYYegg1Vat6Y1wbXSc-Au3x2ob6WwAGpJbv69ERG3-yl-wvSzPf6gfgHd7k_t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><source>IEEE Xplore All Conference Series</source><creator>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</creator><creatorcontrib>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</creatorcontrib><description>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</description><identifier>ISSN: 1050-4729</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781479969234</identifier><identifier>EISBN: 1479969230</identifier><identifier>DOI: 10.1109/ICRA.2015.7139414</identifier><language>eng</language><publisher>IEEE</publisher><subject>Global Positioning System ; Laser radar ; Mobile robots ; Three-dimensional displays ; Trajectory ; Uncertainty ; Vehicles</subject><ispartof>2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, p.1684-1691</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7139414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7139414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maddern, Will</creatorcontrib><creatorcontrib>Pascoe, Geoffrey</creatorcontrib><creatorcontrib>Newman, Paul</creatorcontrib><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><title>2015 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</description><subject>Global Positioning System</subject><subject>Laser radar</subject><subject>Mobile robots</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781479969234</isbn><isbn>1479969230</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KxDAUhaMoOI7zAOImL5CanyZplqU6WiwIg4K74TZzUyO1HZoi-vYOOqvD-eB8i0PIteCZENzd1tWmzCQXOrNCuVzkJ2TlbCFy65xxUuWnZCG1tYwX9u2MLATXnOVWugtymdIH51wpYxbkqcEvnKCLQ0fxe49TxMEjDeNEe5g6ZMlDj7Sp78oN7cdDiQnmOA40DtS_w_C39HGOmK7IeYA-4eqYS_K6vn-pHlnz_FBXZcO8lGpmhQTJtXOhRRGcMbbwXlojQXsDYYegg1Vat6Y1wbXSc-Au3x2ob6WwAGpJbv69ERG3-yl-wvSzPf6gfgHd7k_t</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Maddern, Will</creator><creator>Pascoe, Geoffrey</creator><creator>Newman, Paul</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201505</creationdate><title>Leveraging experience for large-scale LIDAR localisation in changing cities</title><author>Maddern, Will ; Pascoe, Geoffrey ; Newman, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Global Positioning System</topic><topic>Laser radar</topic><topic>Mobile robots</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Maddern, Will</creatorcontrib><creatorcontrib>Pascoe, Geoffrey</creatorcontrib><creatorcontrib>Newman, Paul</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maddern, Will</au><au>Pascoe, Geoffrey</au><au>Newman, Paul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Leveraging experience for large-scale LIDAR localisation in changing cities</atitle><btitle>2015 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2015-05</date><risdate>2015</risdate><spage>1684</spage><epage>1691</epage><pages>1684-1691</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><eisbn>9781479969234</eisbn><eisbn>1479969230</eisbn><abstract>Recent successful approaches to autonomous vehicle localisation and navigation typically involve 3D LIDAR scanners and a static, curated 3D map, both of which are expensive to acquire and maintain. In this paper we propose an experience-based approach to matching a local 3D swathe built using a push-broom 2D LIDAR to a number of prior 3D maps, each of which has been collected during normal driving in different conditions. Local swathes are converted to a combined 2D height and reflectance representation, and we exploit the GPU rendering pipeline to densely sample the localisation cost function to provide robustness and a wide basin of convergence. Prior maps are incrementally built into an experience-based framework from multiple traversals of the same environment, capturing changes in environment structure and appearance over time. The LIDAR localisation solutions from each prior map are fused with vehicle odometry in a probabilistic framework to provide a single pose solution suitable for automated driving. Using this framework we demonstrate real-time centimetre-level localisation using LIDAR data collected in a dynamic city environment over a period of a year.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2015.7139414</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, p.1684-1691
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_7139414
source IEEE Xplore All Conference Series
subjects Global Positioning System
Laser radar
Mobile robots
Three-dimensional displays
Trajectory
Uncertainty
Vehicles
title Leveraging experience for large-scale LIDAR localisation in changing cities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Leveraging%20experience%20for%20large-scale%20LIDAR%20localisation%20in%20changing%20cities&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Maddern,%20Will&rft.date=2015-05&rft.spage=1684&rft.epage=1691&rft.pages=1684-1691&rft.issn=1050-4729&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA.2015.7139414&rft.eisbn=9781479969234&rft.eisbn_list=1479969230&rft_dat=%3Cieee_CHZPO%3E7139414%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-82a20599fbe1f96678cc2762a5c6afdea5f7355b6b6f9b2c0a094da5fcb217aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7139414&rfr_iscdi=true