Loading…
Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments
Highly dynamic environments pose a particular challenge for motion planning due to the need for constant evaluation or validation of plans. However, due to the wide range of applications, an algorithm to safely plan in the presence of moving obstacles is required. In this paper, we propose a novel t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Highly dynamic environments pose a particular challenge for motion planning due to the need for constant evaluation or validation of plans. However, due to the wide range of applications, an algorithm to safely plan in the presence of moving obstacles is required. In this paper, we propose a novel technique that provides computationally efficient planning solutions in environments with static obstacles and several dynamic obstacles with stochastic motions. Path-Guided APF-SR works by first applying a sampling-based technique to identify a valid, collision-free path in the presence of static obstacles. Then, an artificial potential field planning method is used to safely navigate through the moving obstacles using the path as an attractive intermediate goal bias. In order to improve the safety of the artificial potential field, repulsive potential fields around moving obstacles are calculated with stochastic reachable sets, a method previously shown to significantly improve planning success in highly dynamic environments. We show that Path-Guided APF-SR outperforms other methods that have high planning success in environments with 300 stochastically moving obstacles. Furthermore, planning is achievable in environments in which previously developed methods have failed. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ICRA.2015.7139511 |