Loading…

An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture

Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural...

Full description

Saved in:
Bibliographic Details
Main Authors: Bourget, Duane, Bink, Hank, Stanslaski, Scott, Linde, David, Arnett, Chris, Adamski, Tom, Denison, Tim
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3
cites
container_end_page 65
container_issue
container_start_page 61
container_title
container_volume
creator Bourget, Duane
Bink, Hank
Stanslaski, Scott
Linde, David
Arnett, Chris
Adamski, Tom
Denison, Tim
description Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.
doi_str_mv 10.1109/NER.2015.7146560
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7146560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7146560</ieee_id><sourcerecordid>7146560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhaMoWGv3gpv8AKfm_ViWUh9QFETXJZPcaSMzmZLJLPz3TlFcne9yOIfLQeiWkiWlxD68bt6XjFC51FQoqcgZup5Ac8WNNedoRq0wFZdSXPyzUFdoMQxfhBCqlWbGzNCwSjh2x9al4uoW7nEGf3B5D6cLJxhz3_VhbF2JfZrMAVz2B1z6vsXjENMeOxziUHKsxwIBx1QgN84Ddilg1-77HMuhw6dULODLmOEGXTauHWDxp3P0-bj5WD9X27enl_VqW3nGWKmC0ZIYzkSYSHkWrKmFmh6zWhugqqk5ACGN9UoCDZQEy43zTgopqeSez9Hdb28EgN0xx87l793fXvwHEI1fKA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</creator><creatorcontrib>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</creatorcontrib><description>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</description><identifier>ISSN: 1948-3546</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1467363898</identifier><identifier>EISBN: 9781467363891</identifier><identifier>DOI: 10.1109/NER.2015.7146560</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Implants ; Medical treatment ; Prototypes ; Sensors ; Signal processing algorithms ; Telemetry</subject><ispartof>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015, p.61-65</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7146560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7146560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bourget, Duane</creatorcontrib><creatorcontrib>Bink, Hank</creatorcontrib><creatorcontrib>Stanslaski, Scott</creatorcontrib><creatorcontrib>Linde, David</creatorcontrib><creatorcontrib>Arnett, Chris</creatorcontrib><creatorcontrib>Adamski, Tom</creatorcontrib><creatorcontrib>Denison, Tim</creatorcontrib><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><title>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)</title><addtitle>NER</addtitle><description>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</description><subject>Algorithm design and analysis</subject><subject>Implants</subject><subject>Medical treatment</subject><subject>Prototypes</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Telemetry</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>1467363898</isbn><isbn>9781467363891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kEtLAzEUhaMoWGv3gpv8AKfm_ViWUh9QFETXJZPcaSMzmZLJLPz3TlFcne9yOIfLQeiWkiWlxD68bt6XjFC51FQoqcgZup5Ac8WNNedoRq0wFZdSXPyzUFdoMQxfhBCqlWbGzNCwSjh2x9al4uoW7nEGf3B5D6cLJxhz3_VhbF2JfZrMAVz2B1z6vsXjENMeOxziUHKsxwIBx1QgN84Ddilg1-77HMuhw6dULODLmOEGXTauHWDxp3P0-bj5WD9X27enl_VqW3nGWKmC0ZIYzkSYSHkWrKmFmh6zWhugqqk5ACGN9UoCDZQEy43zTgopqeSez9Hdb28EgN0xx87l793fXvwHEI1fKA</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Bourget, Duane</creator><creator>Bink, Hank</creator><creator>Stanslaski, Scott</creator><creator>Linde, David</creator><creator>Arnett, Chris</creator><creator>Adamski, Tom</creator><creator>Denison, Tim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201504</creationdate><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><author>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Implants</topic><topic>Medical treatment</topic><topic>Prototypes</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Telemetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Bourget, Duane</creatorcontrib><creatorcontrib>Bink, Hank</creatorcontrib><creatorcontrib>Stanslaski, Scott</creatorcontrib><creatorcontrib>Linde, David</creatorcontrib><creatorcontrib>Arnett, Chris</creatorcontrib><creatorcontrib>Adamski, Tom</creatorcontrib><creatorcontrib>Denison, Tim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bourget, Duane</au><au>Bink, Hank</au><au>Stanslaski, Scott</au><au>Linde, David</au><au>Arnett, Chris</au><au>Adamski, Tom</au><au>Denison, Tim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</atitle><btitle>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)</btitle><stitle>NER</stitle><date>2015-04</date><risdate>2015</risdate><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><eisbn>1467363898</eisbn><eisbn>9781467363891</eisbn><abstract>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</abstract><pub>IEEE</pub><doi>10.1109/NER.2015.7146560</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-3546
ispartof 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015, p.61-65
issn 1948-3546
1948-3554
language eng
recordid cdi_ieee_primary_7146560
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Implants
Medical treatment
Prototypes
Sensors
Signal processing algorithms
Telemetry
title An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20implantable,%20rechargeable%20neuromodulation%20research%20tool%20using%20a%20distributed%20interface%20and%20algorithm%20architecture&rft.btitle=2015%207th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering%20(NER)&rft.au=Bourget,%20Duane&rft.date=2015-04&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=1948-3546&rft.eissn=1948-3554&rft_id=info:doi/10.1109/NER.2015.7146560&rft.eisbn=1467363898&rft.eisbn_list=9781467363891&rft_dat=%3Cieee_6IE%3E7146560%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7146560&rfr_iscdi=true