Loading…
An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture
Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3 |
---|---|
cites | |
container_end_page | 65 |
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Bourget, Duane Bink, Hank Stanslaski, Scott Linde, David Arnett, Chris Adamski, Tom Denison, Tim |
description | Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases. |
doi_str_mv | 10.1109/NER.2015.7146560 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7146560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7146560</ieee_id><sourcerecordid>7146560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhaMoWGv3gpv8AKfm_ViWUh9QFETXJZPcaSMzmZLJLPz3TlFcne9yOIfLQeiWkiWlxD68bt6XjFC51FQoqcgZup5Ac8WNNedoRq0wFZdSXPyzUFdoMQxfhBCqlWbGzNCwSjh2x9al4uoW7nEGf3B5D6cLJxhz3_VhbF2JfZrMAVz2B1z6vsXjENMeOxziUHKsxwIBx1QgN84Ddilg1-77HMuhw6dULODLmOEGXTauHWDxp3P0-bj5WD9X27enl_VqW3nGWKmC0ZIYzkSYSHkWrKmFmh6zWhugqqk5ACGN9UoCDZQEy43zTgopqeSez9Hdb28EgN0xx87l793fXvwHEI1fKA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</creator><creatorcontrib>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</creatorcontrib><description>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</description><identifier>ISSN: 1948-3546</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1467363898</identifier><identifier>EISBN: 9781467363891</identifier><identifier>DOI: 10.1109/NER.2015.7146560</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Implants ; Medical treatment ; Prototypes ; Sensors ; Signal processing algorithms ; Telemetry</subject><ispartof>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015, p.61-65</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7146560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7146560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bourget, Duane</creatorcontrib><creatorcontrib>Bink, Hank</creatorcontrib><creatorcontrib>Stanslaski, Scott</creatorcontrib><creatorcontrib>Linde, David</creatorcontrib><creatorcontrib>Arnett, Chris</creatorcontrib><creatorcontrib>Adamski, Tom</creatorcontrib><creatorcontrib>Denison, Tim</creatorcontrib><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><title>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)</title><addtitle>NER</addtitle><description>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</description><subject>Algorithm design and analysis</subject><subject>Implants</subject><subject>Medical treatment</subject><subject>Prototypes</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>Telemetry</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>1467363898</isbn><isbn>9781467363891</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kEtLAzEUhaMoWGv3gpv8AKfm_ViWUh9QFETXJZPcaSMzmZLJLPz3TlFcne9yOIfLQeiWkiWlxD68bt6XjFC51FQoqcgZup5Ac8WNNedoRq0wFZdSXPyzUFdoMQxfhBCqlWbGzNCwSjh2x9al4uoW7nEGf3B5D6cLJxhz3_VhbF2JfZrMAVz2B1z6vsXjENMeOxziUHKsxwIBx1QgN84Ddilg1-77HMuhw6dULODLmOEGXTauHWDxp3P0-bj5WD9X27enl_VqW3nGWKmC0ZIYzkSYSHkWrKmFmh6zWhugqqk5ACGN9UoCDZQEy43zTgopqeSez9Hdb28EgN0xx87l793fXvwHEI1fKA</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Bourget, Duane</creator><creator>Bink, Hank</creator><creator>Stanslaski, Scott</creator><creator>Linde, David</creator><creator>Arnett, Chris</creator><creator>Adamski, Tom</creator><creator>Denison, Tim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201504</creationdate><title>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</title><author>Bourget, Duane ; Bink, Hank ; Stanslaski, Scott ; Linde, David ; Arnett, Chris ; Adamski, Tom ; Denison, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Implants</topic><topic>Medical treatment</topic><topic>Prototypes</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>Telemetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Bourget, Duane</creatorcontrib><creatorcontrib>Bink, Hank</creatorcontrib><creatorcontrib>Stanslaski, Scott</creatorcontrib><creatorcontrib>Linde, David</creatorcontrib><creatorcontrib>Arnett, Chris</creatorcontrib><creatorcontrib>Adamski, Tom</creatorcontrib><creatorcontrib>Denison, Tim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bourget, Duane</au><au>Bink, Hank</au><au>Stanslaski, Scott</au><au>Linde, David</au><au>Arnett, Chris</au><au>Adamski, Tom</au><au>Denison, Tim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture</atitle><btitle>2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)</btitle><stitle>NER</stitle><date>2015-04</date><risdate>2015</risdate><spage>61</spage><epage>65</epage><pages>61-65</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><eisbn>1467363898</eisbn><eisbn>9781467363891</eisbn><abstract>Implantable medical devices can provide chronic access to the nervous system. Implants containing embedded scientific instrumentation payloads (e.g. - sensors, classification, and control policy implementation) provide a unique opportunity for exploring diseased neural networks and how these neural networks may be better treated. Physically embedding payloads in an implant creates intertwined constraints such as power consumption, algorithmic computation limits and lack of flexibility, data storage, and the scale of sensing information. These limitations can be largely addressed with a combination of rechargeable batteries and high-bandwidth, secure, distance telemetry, which enables a distributed neural research system. Taking advantage of a distributed architecture helps facilitate scientific investigation in a more unconstrained environment. In this paper, we describe the design of an implantable research tool, discuss the prototype system architecture and its design details, and present preliminary bench verification and validation with human data drawn from representative use cases.</abstract><pub>IEEE</pub><doi>10.1109/NER.2015.7146560</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-3546 |
ispartof | 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015, p.61-65 |
issn | 1948-3546 1948-3554 |
language | eng |
recordid | cdi_ieee_primary_7146560 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Implants Medical treatment Prototypes Sensors Signal processing algorithms Telemetry |
title | An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20implantable,%20rechargeable%20neuromodulation%20research%20tool%20using%20a%20distributed%20interface%20and%20algorithm%20architecture&rft.btitle=2015%207th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering%20(NER)&rft.au=Bourget,%20Duane&rft.date=2015-04&rft.spage=61&rft.epage=65&rft.pages=61-65&rft.issn=1948-3546&rft.eissn=1948-3554&rft_id=info:doi/10.1109/NER.2015.7146560&rft.eisbn=1467363898&rft.eisbn_list=9781467363891&rft_dat=%3Cieee_6IE%3E7146560%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-d87508324dd876c2d98b46eab9778e16fb3ee00f9c65e1d10d938aca5455153c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7146560&rfr_iscdi=true |