Loading…
Performance analysis of canny edge detection for illumination invariant Facial Expression recognition
Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an acti...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 589 |
container_issue | |
container_start_page | 584 |
container_title | |
container_volume | |
creator | Shah, Zankhana H. Kaushik, Vikram |
description | Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created. |
doi_str_mv | 10.1109/IIC.2015.7150809 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7150809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150809</ieee_id><sourcerecordid>7150809</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883</originalsourceid><addsrcrecordid>eNotkMFOwzAQRM0BCSi9I3HxDzTsJnbsHFHVQqVKcIBztXHWlVHqVHZA5O-h0NNIb57mMELcIRSI0DxsNsuiBNSFQQ0Wmgtxg8o0jcFaw5WY5_wBANgoAxVeC37l5Id0oOhYUqR-yiHLwUtHMU6Suz3Ljkd2Yxii_DVl6PvPQ4j0B0L8ohQojnJNLlAvV9_HxDmfusRu2Mdw8m7Fpac-8_ycM_G-Xr0tnxfbl6fN8nG7CGj0uODSkzJKgfLKdKgdQmsbC5qcwapyLQAr1zET1lBaoA7QUGtN6VXtra1m4v5_NzDz7pjCgdK0Oz9R_QBxVVXK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shah, Zankhana H. ; Kaushik, Vikram</creator><creatorcontrib>Shah, Zankhana H. ; Kaushik, Vikram</creatorcontrib><description>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</description><identifier>EISBN: 1479971650</identifier><identifier>EISBN: 9781479971657</identifier><identifier>DOI: 10.1109/IIC.2015.7150809</identifier><language>eng</language><publisher>IEEE</publisher><subject>Euclidian Distance ; Eyebrows ; Face recognition ; Facial Expression Recognition ; Geometry ; Glass ; Illumination Invariance ; Image recognition ; Indian Facial Expression ; Mouth ; Neural Network</subject><ispartof>2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.584-589</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shah, Zankhana H.</creatorcontrib><creatorcontrib>Kaushik, Vikram</creatorcontrib><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><title>2015 International Conference on Industrial Instrumentation and Control (ICIC)</title><addtitle>IIC</addtitle><description>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</description><subject>Euclidian Distance</subject><subject>Eyebrows</subject><subject>Face recognition</subject><subject>Facial Expression Recognition</subject><subject>Geometry</subject><subject>Glass</subject><subject>Illumination Invariance</subject><subject>Image recognition</subject><subject>Indian Facial Expression</subject><subject>Mouth</subject><subject>Neural Network</subject><isbn>1479971650</isbn><isbn>9781479971657</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRM0BCSi9I3HxDzTsJnbsHFHVQqVKcIBztXHWlVHqVHZA5O-h0NNIb57mMELcIRSI0DxsNsuiBNSFQQ0Wmgtxg8o0jcFaw5WY5_wBANgoAxVeC37l5Id0oOhYUqR-yiHLwUtHMU6Suz3Ljkd2Yxii_DVl6PvPQ4j0B0L8ohQojnJNLlAvV9_HxDmfusRu2Mdw8m7Fpac-8_ycM_G-Xr0tnxfbl6fN8nG7CGj0uODSkzJKgfLKdKgdQmsbC5qcwapyLQAr1zET1lBaoA7QUGtN6VXtra1m4v5_NzDz7pjCgdK0Oz9R_QBxVVXK</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Shah, Zankhana H.</creator><creator>Kaushik, Vikram</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201505</creationdate><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><author>Shah, Zankhana H. ; Kaushik, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Euclidian Distance</topic><topic>Eyebrows</topic><topic>Face recognition</topic><topic>Facial Expression Recognition</topic><topic>Geometry</topic><topic>Glass</topic><topic>Illumination Invariance</topic><topic>Image recognition</topic><topic>Indian Facial Expression</topic><topic>Mouth</topic><topic>Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Zankhana H.</creatorcontrib><creatorcontrib>Kaushik, Vikram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Zankhana H.</au><au>Kaushik, Vikram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</atitle><btitle>2015 International Conference on Industrial Instrumentation and Control (ICIC)</btitle><stitle>IIC</stitle><date>2015-05</date><risdate>2015</risdate><spage>584</spage><epage>589</epage><pages>584-589</pages><eisbn>1479971650</eisbn><eisbn>9781479971657</eisbn><abstract>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</abstract><pub>IEEE</pub><doi>10.1109/IIC.2015.7150809</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1479971650 |
ispartof | 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.584-589 |
issn | |
language | eng |
recordid | cdi_ieee_primary_7150809 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Euclidian Distance Eyebrows Face recognition Facial Expression Recognition Geometry Glass Illumination Invariance Image recognition Indian Facial Expression Mouth Neural Network |
title | Performance analysis of canny edge detection for illumination invariant Facial Expression recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20analysis%20of%20canny%20edge%20detection%20for%20illumination%20invariant%20Facial%20Expression%20recognition&rft.btitle=2015%20International%20Conference%20on%20Industrial%20Instrumentation%20and%20Control%20(ICIC)&rft.au=Shah,%20Zankhana%20H.&rft.date=2015-05&rft.spage=584&rft.epage=589&rft.pages=584-589&rft_id=info:doi/10.1109/IIC.2015.7150809&rft.eisbn=1479971650&rft.eisbn_list=9781479971657&rft_dat=%3Cieee_6IE%3E7150809%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7150809&rfr_iscdi=true |