Loading…

Performance analysis of canny edge detection for illumination invariant Facial Expression recognition

Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an acti...

Full description

Saved in:
Bibliographic Details
Main Authors: Shah, Zankhana H., Kaushik, Vikram
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 589
container_issue
container_start_page 584
container_title
container_volume
creator Shah, Zankhana H.
Kaushik, Vikram
description Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.
doi_str_mv 10.1109/IIC.2015.7150809
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7150809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150809</ieee_id><sourcerecordid>7150809</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883</originalsourceid><addsrcrecordid>eNotkMFOwzAQRM0BCSi9I3HxDzTsJnbsHFHVQqVKcIBztXHWlVHqVHZA5O-h0NNIb57mMELcIRSI0DxsNsuiBNSFQQ0Wmgtxg8o0jcFaw5WY5_wBANgoAxVeC37l5Id0oOhYUqR-yiHLwUtHMU6Suz3Ljkd2Yxii_DVl6PvPQ4j0B0L8ohQojnJNLlAvV9_HxDmfusRu2Mdw8m7Fpac-8_ycM_G-Xr0tnxfbl6fN8nG7CGj0uODSkzJKgfLKdKgdQmsbC5qcwapyLQAr1zET1lBaoA7QUGtN6VXtra1m4v5_NzDz7pjCgdK0Oz9R_QBxVVXK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shah, Zankhana H. ; Kaushik, Vikram</creator><creatorcontrib>Shah, Zankhana H. ; Kaushik, Vikram</creatorcontrib><description>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</description><identifier>EISBN: 1479971650</identifier><identifier>EISBN: 9781479971657</identifier><identifier>DOI: 10.1109/IIC.2015.7150809</identifier><language>eng</language><publisher>IEEE</publisher><subject>Euclidian Distance ; Eyebrows ; Face recognition ; Facial Expression Recognition ; Geometry ; Glass ; Illumination Invariance ; Image recognition ; Indian Facial Expression ; Mouth ; Neural Network</subject><ispartof>2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.584-589</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shah, Zankhana H.</creatorcontrib><creatorcontrib>Kaushik, Vikram</creatorcontrib><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><title>2015 International Conference on Industrial Instrumentation and Control (ICIC)</title><addtitle>IIC</addtitle><description>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</description><subject>Euclidian Distance</subject><subject>Eyebrows</subject><subject>Face recognition</subject><subject>Facial Expression Recognition</subject><subject>Geometry</subject><subject>Glass</subject><subject>Illumination Invariance</subject><subject>Image recognition</subject><subject>Indian Facial Expression</subject><subject>Mouth</subject><subject>Neural Network</subject><isbn>1479971650</isbn><isbn>9781479971657</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOwzAQRM0BCSi9I3HxDzTsJnbsHFHVQqVKcIBztXHWlVHqVHZA5O-h0NNIb57mMELcIRSI0DxsNsuiBNSFQQ0Wmgtxg8o0jcFaw5WY5_wBANgoAxVeC37l5Id0oOhYUqR-yiHLwUtHMU6Suz3Ljkd2Yxii_DVl6PvPQ4j0B0L8ohQojnJNLlAvV9_HxDmfusRu2Mdw8m7Fpac-8_ycM_G-Xr0tnxfbl6fN8nG7CGj0uODSkzJKgfLKdKgdQmsbC5qcwapyLQAr1zET1lBaoA7QUGtN6VXtra1m4v5_NzDz7pjCgdK0Oz9R_QBxVVXK</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Shah, Zankhana H.</creator><creator>Kaushik, Vikram</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201505</creationdate><title>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</title><author>Shah, Zankhana H. ; Kaushik, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Euclidian Distance</topic><topic>Eyebrows</topic><topic>Face recognition</topic><topic>Facial Expression Recognition</topic><topic>Geometry</topic><topic>Glass</topic><topic>Illumination Invariance</topic><topic>Image recognition</topic><topic>Indian Facial Expression</topic><topic>Mouth</topic><topic>Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Zankhana H.</creatorcontrib><creatorcontrib>Kaushik, Vikram</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Zankhana H.</au><au>Kaushik, Vikram</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance analysis of canny edge detection for illumination invariant Facial Expression recognition</atitle><btitle>2015 International Conference on Industrial Instrumentation and Control (ICIC)</btitle><stitle>IIC</stitle><date>2015-05</date><risdate>2015</risdate><spage>584</spage><epage>589</epage><pages>584-589</pages><eisbn>1479971650</eisbn><eisbn>9781479971657</eisbn><abstract>Face perception is a very important component of human cognition. We can judge the person's mood and mental status through his/her expressions. In other words, the most expressive way human display emotion is through facial expressions. And hence facial expression recognition has become an active research area in the field of human computer interaction. The work in this paper concentrates on images having different illuminations and analyzes the performance of canny edge detection method with two classifiers, Euclidian distance and neural network. The results are tested on JAFFE (Japanese Female Facial Expression) database, available in public domain and IFE (Indian Facial Expression) database which is self created.</abstract><pub>IEEE</pub><doi>10.1109/IIC.2015.7150809</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479971650
ispartof 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.584-589
issn
language eng
recordid cdi_ieee_primary_7150809
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Euclidian Distance
Eyebrows
Face recognition
Facial Expression Recognition
Geometry
Glass
Illumination Invariance
Image recognition
Indian Facial Expression
Mouth
Neural Network
title Performance analysis of canny edge detection for illumination invariant Facial Expression recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20analysis%20of%20canny%20edge%20detection%20for%20illumination%20invariant%20Facial%20Expression%20recognition&rft.btitle=2015%20International%20Conference%20on%20Industrial%20Instrumentation%20and%20Control%20(ICIC)&rft.au=Shah,%20Zankhana%20H.&rft.date=2015-05&rft.spage=584&rft.epage=589&rft.pages=584-589&rft_id=info:doi/10.1109/IIC.2015.7150809&rft.eisbn=1479971650&rft.eisbn_list=9781479971657&rft_dat=%3Cieee_6IE%3E7150809%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e2fa474404f47d15c10b89805ac7133cb00e4cdeea160280ad017ab872f46f883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7150809&rfr_iscdi=true