Loading…
Wavelet transform based EMG feature extraction and evaluation using scatter graphs
In the hand movement recognition system the most important step is feature extraction. Nowadays, the analysis of Electromyograhy signal using wavelet transform becoming the most powerful method. In this paper we have typically used the mathematical diagram tool i.e. scatter graph technique to evalua...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1277 |
container_issue | |
container_start_page | 1273 |
container_title | |
container_volume | |
creator | Lolure, Amol Thool, V. R. |
description | In the hand movement recognition system the most important step is feature extraction. Nowadays, the analysis of Electromyograhy signal using wavelet transform becoming the most powerful method. In this paper we have typically used the mathematical diagram tool i.e. scatter graph technique to evaluate the performance of EMG features. The EMG signal corresponding to the different hand movements and finger movements are considered. Various features that are widely used are extracted from the different wavelet coefficient. The graphs obtained for MAV(Mean Absolute Value) from the reconstructed coefficient shows the better performance. |
doi_str_mv | 10.1109/IIC.2015.7150944 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7150944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150944</ieee_id><sourcerecordid>7150944</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-31de1aa4a5c19264a1c200ce06f376d6270fb46d0756a66c3380338079508ab63</originalsourceid><addsrcrecordid>eNotj01Lw0AURceFoNbuBTfzBxLfy3x1llJqDVQEUVyWl-SlRtK0zEyK_nutdnG5HC4cuELcIOSI4O_Kcp4XgCZ3aMBrfSauUDvvHVoDF2Ia4ycAoNcOFF6Kl3c6cM9JpkBDbHdhKyuK3MjF01K2TGkMLPnrd61TtxskDY3kA_Uj_eEYu2EjY00pcZCbQPuPeC3OW-ojT089EW8Pi9f5Y7Z6Xpbz-1XWoTMpU9gwEmkyNfrCasK6AKgZbKucbWzhoK20bcAZS9bWSs3gGOcNzKiyaiJu_70dM6_3odtS-F6fbqsfyA9NSA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wavelet transform based EMG feature extraction and evaluation using scatter graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lolure, Amol ; Thool, V. R.</creator><creatorcontrib>Lolure, Amol ; Thool, V. R.</creatorcontrib><description>In the hand movement recognition system the most important step is feature extraction. Nowadays, the analysis of Electromyograhy signal using wavelet transform becoming the most powerful method. In this paper we have typically used the mathematical diagram tool i.e. scatter graph technique to evaluate the performance of EMG features. The EMG signal corresponding to the different hand movements and finger movements are considered. Various features that are widely used are extracted from the different wavelet coefficient. The graphs obtained for MAV(Mean Absolute Value) from the reconstructed coefficient shows the better performance.</description><identifier>EISBN: 1479971650</identifier><identifier>EISBN: 9781479971657</identifier><identifier>DOI: 10.1109/IIC.2015.7150944</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Discrete wavelet transforms ; Electromyograph ; Electromyography ; feature extraction ; scatter graph ; Thumb ; wavelet transform</subject><ispartof>2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.1273-1277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lolure, Amol</creatorcontrib><creatorcontrib>Thool, V. R.</creatorcontrib><title>Wavelet transform based EMG feature extraction and evaluation using scatter graphs</title><title>2015 International Conference on Industrial Instrumentation and Control (ICIC)</title><addtitle>IIC</addtitle><description>In the hand movement recognition system the most important step is feature extraction. Nowadays, the analysis of Electromyograhy signal using wavelet transform becoming the most powerful method. In this paper we have typically used the mathematical diagram tool i.e. scatter graph technique to evaluate the performance of EMG features. The EMG signal corresponding to the different hand movements and finger movements are considered. Various features that are widely used are extracted from the different wavelet coefficient. The graphs obtained for MAV(Mean Absolute Value) from the reconstructed coefficient shows the better performance.</description><subject>Bandwidth</subject><subject>Discrete wavelet transforms</subject><subject>Electromyograph</subject><subject>Electromyography</subject><subject>feature extraction</subject><subject>scatter graph</subject><subject>Thumb</subject><subject>wavelet transform</subject><isbn>1479971650</isbn><isbn>9781479971657</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURceFoNbuBTfzBxLfy3x1llJqDVQEUVyWl-SlRtK0zEyK_nutdnG5HC4cuELcIOSI4O_Kcp4XgCZ3aMBrfSauUDvvHVoDF2Ia4ycAoNcOFF6Kl3c6cM9JpkBDbHdhKyuK3MjF01K2TGkMLPnrd61TtxskDY3kA_Uj_eEYu2EjY00pcZCbQPuPeC3OW-ojT089EW8Pi9f5Y7Z6Xpbz-1XWoTMpU9gwEmkyNfrCasK6AKgZbKucbWzhoK20bcAZS9bWSs3gGOcNzKiyaiJu_70dM6_3odtS-F6fbqsfyA9NSA</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Lolure, Amol</creator><creator>Thool, V. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201505</creationdate><title>Wavelet transform based EMG feature extraction and evaluation using scatter graphs</title><author>Lolure, Amol ; Thool, V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-31de1aa4a5c19264a1c200ce06f376d6270fb46d0756a66c3380338079508ab63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bandwidth</topic><topic>Discrete wavelet transforms</topic><topic>Electromyograph</topic><topic>Electromyography</topic><topic>feature extraction</topic><topic>scatter graph</topic><topic>Thumb</topic><topic>wavelet transform</topic><toplevel>online_resources</toplevel><creatorcontrib>Lolure, Amol</creatorcontrib><creatorcontrib>Thool, V. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lolure, Amol</au><au>Thool, V. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wavelet transform based EMG feature extraction and evaluation using scatter graphs</atitle><btitle>2015 International Conference on Industrial Instrumentation and Control (ICIC)</btitle><stitle>IIC</stitle><date>2015-05</date><risdate>2015</risdate><spage>1273</spage><epage>1277</epage><pages>1273-1277</pages><eisbn>1479971650</eisbn><eisbn>9781479971657</eisbn><abstract>In the hand movement recognition system the most important step is feature extraction. Nowadays, the analysis of Electromyograhy signal using wavelet transform becoming the most powerful method. In this paper we have typically used the mathematical diagram tool i.e. scatter graph technique to evaluate the performance of EMG features. The EMG signal corresponding to the different hand movements and finger movements are considered. Various features that are widely used are extracted from the different wavelet coefficient. The graphs obtained for MAV(Mean Absolute Value) from the reconstructed coefficient shows the better performance.</abstract><pub>IEEE</pub><doi>10.1109/IIC.2015.7150944</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1479971650 |
ispartof | 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, p.1273-1277 |
issn | |
language | eng |
recordid | cdi_ieee_primary_7150944 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Discrete wavelet transforms Electromyograph Electromyography feature extraction scatter graph Thumb wavelet transform |
title | Wavelet transform based EMG feature extraction and evaluation using scatter graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wavelet%20transform%20based%20EMG%20feature%20extraction%20and%20evaluation%20using%20scatter%20graphs&rft.btitle=2015%20International%20Conference%20on%20Industrial%20Instrumentation%20and%20Control%20(ICIC)&rft.au=Lolure,%20Amol&rft.date=2015-05&rft.spage=1273&rft.epage=1277&rft.pages=1273-1277&rft_id=info:doi/10.1109/IIC.2015.7150944&rft.eisbn=1479971650&rft.eisbn_list=9781479971657&rft_dat=%3Cieee_6IE%3E7150944%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-31de1aa4a5c19264a1c200ce06f376d6270fb46d0756a66c3380338079508ab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7150944&rfr_iscdi=true |