Loading…

Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators

Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a non...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2015-12, Vol.62 (12), p.7717-7727
Main Authors: Cheng, Long, Liu, Weichuan, Hou, Zeng-Guang, Yu, Junzhi, Tan, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653
cites cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653
container_end_page 7727
container_issue 12
container_start_page 7717
container_title IEEE transactions on industrial electronics (1982)
container_volume 62
creator Cheng, Long
Liu, Weichuan
Hou, Zeng-Guang
Yu, Junzhi
Tan, Min
description Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.
doi_str_mv 10.1109/TIE.2015.2455026
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7154477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7154477</ieee_id><sourcerecordid>3883116471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUvBc2eSJvna4xxTB3MOnOeSpl-gszYzSRX96-3Y8PQuv_ce_Ai5ZnTCGC3uNov5hFMmJ1xISbk6ISMmJaRFIfJTMqIc8pRSoc7JRQhbSpmQTI7I6wp7r9t0hfHb-ff0Xgesk5Xr2qZD7ZNnV2ObrD3WjYnNFyYz10Xv2sQ6n6wb_HXYoom-McnUxF5H58MlObO6DXh1zDF5e5hvZk_p8uVxMZsuUyOoiCkvChB5nZlKacuxriDjvK4UFFwwjVpLY6yVFKxQYGlNtZEVIEihjFFKZmNye9jdeffZY4jl1vW-Gy5LBlkOwKGgA0UPlPEuBI-23PnmQ_ufktFyr64c1JV7deVR3VC5OVQaRPzHgUkhALI_Vn1qzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738772790</pqid></control><display><type>article</type><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</creator><creatorcontrib>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</creatorcontrib><description>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2015.2455026</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological neural networks ; Computational modeling ; Control algorithms ; Feedforward neural networks ; Hysteresis ; Integrated circuit modeling ; NARMAX ; Neural networks ; Optimization ; Piezoelectric actuator ; predictive control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2015-12, Vol.62 (12), p.7717-7727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</citedby><cites>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7154477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Weichuan</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</description><subject>Biological neural networks</subject><subject>Computational modeling</subject><subject>Control algorithms</subject><subject>Feedforward neural networks</subject><subject>Hysteresis</subject><subject>Integrated circuit modeling</subject><subject>NARMAX</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Piezoelectric actuator</subject><subject>predictive control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAYxYMoOKd3wUvBc2eSJvna4xxTB3MOnOeSpl-gszYzSRX96-3Y8PQuv_ce_Ai5ZnTCGC3uNov5hFMmJ1xISbk6ISMmJaRFIfJTMqIc8pRSoc7JRQhbSpmQTI7I6wp7r9t0hfHb-ff0Xgesk5Xr2qZD7ZNnV2ObrD3WjYnNFyYz10Xv2sQ6n6wb_HXYoom-McnUxF5H58MlObO6DXh1zDF5e5hvZk_p8uVxMZsuUyOoiCkvChB5nZlKacuxriDjvK4UFFwwjVpLY6yVFKxQYGlNtZEVIEihjFFKZmNye9jdeffZY4jl1vW-Gy5LBlkOwKGgA0UPlPEuBI-23PnmQ_ufktFyr64c1JV7deVR3VC5OVQaRPzHgUkhALI_Vn1qzw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Cheng, Long</creator><creator>Liu, Weichuan</creator><creator>Hou, Zeng-Guang</creator><creator>Yu, Junzhi</creator><creator>Tan, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><author>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological neural networks</topic><topic>Computational modeling</topic><topic>Control algorithms</topic><topic>Feedforward neural networks</topic><topic>Hysteresis</topic><topic>Integrated circuit modeling</topic><topic>NARMAX</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Piezoelectric actuator</topic><topic>predictive control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Weichuan</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Long</au><au>Liu, Weichuan</au><au>Hou, Zeng-Guang</au><au>Yu, Junzhi</au><au>Tan, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2015-12</date><risdate>2015</risdate><volume>62</volume><issue>12</issue><spage>7717</spage><epage>7727</epage><pages>7717-7727</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2015.2455026</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2015-12, Vol.62 (12), p.7717-7727
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_7154477
source IEEE Electronic Library (IEL) Journals
subjects Biological neural networks
Computational modeling
Control algorithms
Feedforward neural networks
Hysteresis
Integrated circuit modeling
NARMAX
Neural networks
Optimization
Piezoelectric actuator
predictive control
title Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network-Based%20Nonlinear%20Model%20Predictive%20Control%20for%20Piezoelectric%20Actuators&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Cheng,%20Long&rft.date=2015-12&rft.volume=62&rft.issue=12&rft.spage=7717&rft.epage=7727&rft.pages=7717-7727&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2015.2455026&rft_dat=%3Cproquest_ieee_%3E3883116471%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1738772790&rft_id=info:pmid/&rft_ieee_id=7154477&rfr_iscdi=true