Loading…
Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators
Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a non...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2015-12, Vol.62 (12), p.7717-7727 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653 |
container_end_page | 7727 |
container_issue | 12 |
container_start_page | 7717 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 62 |
creator | Cheng, Long Liu, Weichuan Hou, Zeng-Guang Yu, Junzhi Tan, Min |
description | Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance. |
doi_str_mv | 10.1109/TIE.2015.2455026 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7154477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7154477</ieee_id><sourcerecordid>3883116471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUvBc2eSJvna4xxTB3MOnOeSpl-gszYzSRX96-3Y8PQuv_ce_Ai5ZnTCGC3uNov5hFMmJ1xISbk6ISMmJaRFIfJTMqIc8pRSoc7JRQhbSpmQTI7I6wp7r9t0hfHb-ff0Xgesk5Xr2qZD7ZNnV2ObrD3WjYnNFyYz10Xv2sQ6n6wb_HXYoom-McnUxF5H58MlObO6DXh1zDF5e5hvZk_p8uVxMZsuUyOoiCkvChB5nZlKacuxriDjvK4UFFwwjVpLY6yVFKxQYGlNtZEVIEihjFFKZmNye9jdeffZY4jl1vW-Gy5LBlkOwKGgA0UPlPEuBI-23PnmQ_ufktFyr64c1JV7deVR3VC5OVQaRPzHgUkhALI_Vn1qzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738772790</pqid></control><display><type>article</type><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</creator><creatorcontrib>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</creatorcontrib><description>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2015.2455026</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological neural networks ; Computational modeling ; Control algorithms ; Feedforward neural networks ; Hysteresis ; Integrated circuit modeling ; NARMAX ; Neural networks ; Optimization ; Piezoelectric actuator ; predictive control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2015-12, Vol.62 (12), p.7717-7727</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</citedby><cites>FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7154477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Weichuan</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</description><subject>Biological neural networks</subject><subject>Computational modeling</subject><subject>Control algorithms</subject><subject>Feedforward neural networks</subject><subject>Hysteresis</subject><subject>Integrated circuit modeling</subject><subject>NARMAX</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Piezoelectric actuator</subject><subject>predictive control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAYxYMoOKd3wUvBc2eSJvna4xxTB3MOnOeSpl-gszYzSRX96-3Y8PQuv_ce_Ai5ZnTCGC3uNov5hFMmJ1xISbk6ISMmJaRFIfJTMqIc8pRSoc7JRQhbSpmQTI7I6wp7r9t0hfHb-ff0Xgesk5Xr2qZD7ZNnV2ObrD3WjYnNFyYz10Xv2sQ6n6wb_HXYoom-McnUxF5H58MlObO6DXh1zDF5e5hvZk_p8uVxMZsuUyOoiCkvChB5nZlKacuxriDjvK4UFFwwjVpLY6yVFKxQYGlNtZEVIEihjFFKZmNye9jdeffZY4jl1vW-Gy5LBlkOwKGgA0UPlPEuBI-23PnmQ_ufktFyr64c1JV7deVR3VC5OVQaRPzHgUkhALI_Vn1qzw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Cheng, Long</creator><creator>Liu, Weichuan</creator><creator>Hou, Zeng-Guang</creator><creator>Yu, Junzhi</creator><creator>Tan, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</title><author>Cheng, Long ; Liu, Weichuan ; Hou, Zeng-Guang ; Yu, Junzhi ; Tan, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological neural networks</topic><topic>Computational modeling</topic><topic>Control algorithms</topic><topic>Feedforward neural networks</topic><topic>Hysteresis</topic><topic>Integrated circuit modeling</topic><topic>NARMAX</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Piezoelectric actuator</topic><topic>predictive control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Weichuan</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Long</au><au>Liu, Weichuan</au><au>Hou, Zeng-Guang</au><au>Yu, Junzhi</au><au>Tan, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2015-12</date><risdate>2015</risdate><volume>62</volume><issue>12</issue><spage>7717</spage><epage>7727</epage><pages>7717-7727</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Piezoelectric actuators (PEAs) have been widely used in nanotechnology due to their characteristics of fast response, large mass ratio, and high stiffness. However, hysteresis, which is an inherent nonlinear property of PEAs, greatly deteriorates the control performance of PEAs. In this paper, a nonlinear model predictive control (NMPC) approach is proposed for the displacement tracking problem of PEAs. First, a "nonlinear autoregressive-moving-average with exogenous inputs" (NARMAX) model of PEAs is implemented by multilayer neural networks; second, the tracking control problem is converted into an optimization problem by the principle of NMPC, and then, it is solved by the Levenberg-Marquardt algorithm. The most distinguished feature of the proposed approach is that the inversion model of hysteresis is no longer a necessity, which avoids the inversion imprecision problem encountered in the widely used inversion-based control algorithms. To verify the effectiveness of the proposed modeling and control methods, experiments are made on a commercial PEA product (P-753.1CD, Physik Instrumente), and comparisons with some existing controllers and a commercial proportional-integral-derivative controller are conducted. Experimental results show that the proposed scheme has satisfactory modeling and control performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2015.2455026</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2015-12, Vol.62 (12), p.7717-7727 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_7154477 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biological neural networks Computational modeling Control algorithms Feedforward neural networks Hysteresis Integrated circuit modeling NARMAX Neural networks Optimization Piezoelectric actuator predictive control |
title | Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network-Based%20Nonlinear%20Model%20Predictive%20Control%20for%20Piezoelectric%20Actuators&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Cheng,%20Long&rft.date=2015-12&rft.volume=62&rft.issue=12&rft.spage=7717&rft.epage=7727&rft.pages=7717-7727&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2015.2455026&rft_dat=%3Cproquest_ieee_%3E3883116471%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-299748d3cb6af2edb7322db679241aeaa5ccff507f467f0d0ac5b7e7546cc6653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1738772790&rft_id=info:pmid/&rft_ieee_id=7154477&rfr_iscdi=true |