Loading…

Planning Battery Swapping Stations for Urban Electrical Taxis

Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Yang, Huang, Liusheng, Wei, Hao, Zheng, Wei, Gu, Tianbo, Liu, Hengchang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 743
container_issue
container_start_page 742
container_title
container_volume
creator Wang, Yang
Huang, Liusheng
Wei, Hao
Zheng, Wei
Gu, Tianbo
Liu, Hengchang
description Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.
doi_str_mv 10.1109/ICDCS.2015.87
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7164965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7164965</ieee_id><sourcerecordid>1718947626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3</originalsourceid><addsrcrecordid>eNotjsFLwzAYxaMoOOeOnrz06KWzX5p8aQ4etE4dDBS2nUuSJhLo2ppEdP-9k3l68Pjxe4-QayjmAIW8W9ZP9XpOC-DzSpyQS2AoSkGB8VMyoVzwvGIAZ2QCBZY5SiouyCxGrwuKAlnF5YTcv3eq733_kT2qlGzYZ-tvNY5_xTqp5Ic-Zm4I2TZo1WeLzpoUvFFdtlE_Pl6Rc6e6aGf_OSXb58Wmfs1Xby_L-mGVe6Blyo0rkCMTQlPg2nFNlVPIpDYOTUUZ404wQCkqdBJMa6wEpqEtrbIta005JbdH7xiGzy8bU7Pz0dju8N0OX7EBAZVkAike0Jsj6q21zRj8ToV9I-Awh7z8BQP-V-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1718947626</pqid></control><display><type>conference_proceeding</type><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</creator><creatorcontrib>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</creatorcontrib><description>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</description><identifier>ISSN: 1063-6927</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 1467372145</identifier><identifier>EISBN: 9781467372145</identifier><identifier>DOI: 10.1109/ICDCS.2015.87</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air pollution ; Batteries ; Computer networks ; Computer science ; Distributed processing ; Electric batteries ; Electric vehicles ; Historic ; Hydrogen ; Planning ; Stations ; Taxicabs ; Urban areas</subject><ispartof>2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, p.742-743</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7164965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7164965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Gu, Tianbo</creatorcontrib><creatorcontrib>Liu, Hengchang</creatorcontrib><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><title>2015 IEEE 35th International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</description><subject>Air pollution</subject><subject>Batteries</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Distributed processing</subject><subject>Electric batteries</subject><subject>Electric vehicles</subject><subject>Historic</subject><subject>Hydrogen</subject><subject>Planning</subject><subject>Stations</subject><subject>Taxicabs</subject><subject>Urban areas</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1467372145</isbn><isbn>9781467372145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjsFLwzAYxaMoOOeOnrz06KWzX5p8aQ4etE4dDBS2nUuSJhLo2ppEdP-9k3l68Pjxe4-QayjmAIW8W9ZP9XpOC-DzSpyQS2AoSkGB8VMyoVzwvGIAZ2QCBZY5SiouyCxGrwuKAlnF5YTcv3eq733_kT2qlGzYZ-tvNY5_xTqp5Ic-Zm4I2TZo1WeLzpoUvFFdtlE_Pl6Rc6e6aGf_OSXb58Wmfs1Xby_L-mGVe6Blyo0rkCMTQlPg2nFNlVPIpDYOTUUZ404wQCkqdBJMa6wEpqEtrbIta005JbdH7xiGzy8bU7Pz0dju8N0OX7EBAZVkAike0Jsj6q21zRj8ToV9I-Awh7z8BQP-V-8</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wang, Yang</creator><creator>Huang, Liusheng</creator><creator>Wei, Hao</creator><creator>Zheng, Wei</creator><creator>Gu, Tianbo</creator><creator>Liu, Hengchang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><author>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air pollution</topic><topic>Batteries</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Distributed processing</topic><topic>Electric batteries</topic><topic>Electric vehicles</topic><topic>Historic</topic><topic>Hydrogen</topic><topic>Planning</topic><topic>Stations</topic><topic>Taxicabs</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Gu, Tianbo</creatorcontrib><creatorcontrib>Liu, Hengchang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yang</au><au>Huang, Liusheng</au><au>Wei, Hao</au><au>Zheng, Wei</au><au>Gu, Tianbo</au><au>Liu, Hengchang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Planning Battery Swapping Stations for Urban Electrical Taxis</atitle><btitle>2015 IEEE 35th International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>742</spage><epage>743</epage><pages>742-743</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><eisbn>1467372145</eisbn><eisbn>9781467372145</eisbn><coden>IEEPAD</coden><abstract>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2015.87</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6927
ispartof 2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, p.742-743
issn 1063-6927
2575-8411
language eng
recordid cdi_ieee_primary_7164965
source IEEE Xplore All Conference Series
subjects Air pollution
Batteries
Computer networks
Computer science
Distributed processing
Electric batteries
Electric vehicles
Historic
Hydrogen
Planning
Stations
Taxicabs
Urban areas
title Planning Battery Swapping Stations for Urban Electrical Taxis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Planning%20Battery%20Swapping%20Stations%20for%20Urban%20Electrical%20Taxis&rft.btitle=2015%20IEEE%2035th%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Wang,%20Yang&rft.date=2015-06-01&rft.spage=742&rft.epage=743&rft.pages=742-743&rft.issn=1063-6927&rft.eissn=2575-8411&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2015.87&rft.eisbn=1467372145&rft.eisbn_list=9781467372145&rft_dat=%3Cproquest_CHZPO%3E1718947626%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718947626&rft_id=info:pmid/&rft_ieee_id=7164965&rfr_iscdi=true