Loading…
Planning Battery Swapping Stations for Urban Electrical Taxis
Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 743 |
container_issue | |
container_start_page | 742 |
container_title | |
container_volume | |
creator | Wang, Yang Huang, Liusheng Wei, Hao Zheng, Wei Gu, Tianbo Liu, Hengchang |
description | Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%. |
doi_str_mv | 10.1109/ICDCS.2015.87 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7164965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7164965</ieee_id><sourcerecordid>1718947626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3</originalsourceid><addsrcrecordid>eNotjsFLwzAYxaMoOOeOnrz06KWzX5p8aQ4etE4dDBS2nUuSJhLo2ppEdP-9k3l68Pjxe4-QayjmAIW8W9ZP9XpOC-DzSpyQS2AoSkGB8VMyoVzwvGIAZ2QCBZY5SiouyCxGrwuKAlnF5YTcv3eq733_kT2qlGzYZ-tvNY5_xTqp5Ic-Zm4I2TZo1WeLzpoUvFFdtlE_Pl6Rc6e6aGf_OSXb58Wmfs1Xby_L-mGVe6Blyo0rkCMTQlPg2nFNlVPIpDYOTUUZ404wQCkqdBJMa6wEpqEtrbIta005JbdH7xiGzy8bU7Pz0dju8N0OX7EBAZVkAike0Jsj6q21zRj8ToV9I-Awh7z8BQP-V-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1718947626</pqid></control><display><type>conference_proceeding</type><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</creator><creatorcontrib>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</creatorcontrib><description>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</description><identifier>ISSN: 1063-6927</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 1467372145</identifier><identifier>EISBN: 9781467372145</identifier><identifier>DOI: 10.1109/ICDCS.2015.87</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air pollution ; Batteries ; Computer networks ; Computer science ; Distributed processing ; Electric batteries ; Electric vehicles ; Historic ; Hydrogen ; Planning ; Stations ; Taxicabs ; Urban areas</subject><ispartof>2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, p.742-743</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7164965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7164965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Gu, Tianbo</creatorcontrib><creatorcontrib>Liu, Hengchang</creatorcontrib><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><title>2015 IEEE 35th International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</description><subject>Air pollution</subject><subject>Batteries</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Distributed processing</subject><subject>Electric batteries</subject><subject>Electric vehicles</subject><subject>Historic</subject><subject>Hydrogen</subject><subject>Planning</subject><subject>Stations</subject><subject>Taxicabs</subject><subject>Urban areas</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1467372145</isbn><isbn>9781467372145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjsFLwzAYxaMoOOeOnrz06KWzX5p8aQ4etE4dDBS2nUuSJhLo2ppEdP-9k3l68Pjxe4-QayjmAIW8W9ZP9XpOC-DzSpyQS2AoSkGB8VMyoVzwvGIAZ2QCBZY5SiouyCxGrwuKAlnF5YTcv3eq733_kT2qlGzYZ-tvNY5_xTqp5Ic-Zm4I2TZo1WeLzpoUvFFdtlE_Pl6Rc6e6aGf_OSXb58Wmfs1Xby_L-mGVe6Blyo0rkCMTQlPg2nFNlVPIpDYOTUUZ404wQCkqdBJMa6wEpqEtrbIta005JbdH7xiGzy8bU7Pz0dju8N0OX7EBAZVkAike0Jsj6q21zRj8ToV9I-Awh7z8BQP-V-8</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Wang, Yang</creator><creator>Huang, Liusheng</creator><creator>Wei, Hao</creator><creator>Zheng, Wei</creator><creator>Gu, Tianbo</creator><creator>Liu, Hengchang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Planning Battery Swapping Stations for Urban Electrical Taxis</title><author>Wang, Yang ; Huang, Liusheng ; Wei, Hao ; Zheng, Wei ; Gu, Tianbo ; Liu, Hengchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air pollution</topic><topic>Batteries</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Distributed processing</topic><topic>Electric batteries</topic><topic>Electric vehicles</topic><topic>Historic</topic><topic>Hydrogen</topic><topic>Planning</topic><topic>Stations</topic><topic>Taxicabs</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Huang, Liusheng</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Gu, Tianbo</creatorcontrib><creatorcontrib>Liu, Hengchang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yang</au><au>Huang, Liusheng</au><au>Wei, Hao</au><au>Zheng, Wei</au><au>Gu, Tianbo</au><au>Liu, Hengchang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Planning Battery Swapping Stations for Urban Electrical Taxis</atitle><btitle>2015 IEEE 35th International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>742</spage><epage>743</epage><pages>742-743</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><eisbn>1467372145</eisbn><eisbn>9781467372145</eisbn><coden>IEEPAD</coden><abstract>Despite the clear benefits of electric vehicles (EVs) in terms of reducing greenhouse gas emissions and traditional energy consumptions, the popularization of EVs remains a challenge in the short run. When considering electric taxis, urban planners must face the additional issue of providing battery swapping services. While previous studies focused on planning battery swapping stations for private EVs, we investigate ways of supporting the upgrade of an entire urban taxi system, with demands differing both in scale and nature. With this insight, we analyze the historical sensing data of taxi routes, and evaluate the battery swapping demand profile, as well as the driving time between positions in the road network. Based on these inputs, we propose a method to calculate an optimized battery swapping station scheme. Our strategies are then evaluated via a real world 366-day, 3,976-taxi dataset. The results show that compared to uniform deployment, our planning scheme reduces the average time-cost by 67.2%.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2015.87</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6927 |
ispartof | 2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, p.742-743 |
issn | 1063-6927 2575-8411 |
language | eng |
recordid | cdi_ieee_primary_7164965 |
source | IEEE Xplore All Conference Series |
subjects | Air pollution Batteries Computer networks Computer science Distributed processing Electric batteries Electric vehicles Historic Hydrogen Planning Stations Taxicabs Urban areas |
title | Planning Battery Swapping Stations for Urban Electrical Taxis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Planning%20Battery%20Swapping%20Stations%20for%20Urban%20Electrical%20Taxis&rft.btitle=2015%20IEEE%2035th%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Wang,%20Yang&rft.date=2015-06-01&rft.spage=742&rft.epage=743&rft.pages=742-743&rft.issn=1063-6927&rft.eissn=2575-8411&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2015.87&rft.eisbn=1467372145&rft.eisbn_list=9781467372145&rft_dat=%3Cproquest_CHZPO%3E1718947626%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-cf0656477b215bf5b2afa649bcf6c82445f74169786f91cdce914b1d3eaed4dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718947626&rft_id=info:pmid/&rft_ieee_id=7164965&rfr_iscdi=true |