Loading…
RENO: a high-efficient reconfigurable neuromorphic computing accelerator design
Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Liu, Xiaoxiao Mao, Mengjie Liu, Beiye Li, Hai Chen, Yiran Li, Boxun Wang, Yu Jiang, Hao Barnell, Mark Wu, Qing Yang, Jianhua |
description | Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy. |
doi_str_mv | 10.1145/2744769.2744900 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7167250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7167250</ieee_id><sourcerecordid>acm_books_10_1145_2744769_2744900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43</originalsourceid><addsrcrecordid>eNqNj01Lw0AQhkesYI05e_APeEmc_ZjdnaOUWoXSQlHwtmzMBKKWSuLFf--W5gd4emHmmZd5AG4U1kpZutfeWu-4PiYjnkHJPijrmQOS5nO4yhQaQxp5BnP0JlQK8e0SynH8QETlnFWk5jDbLTfba7jo0tco5ZQFvD4uXxZP1Xq7el48rKuUm36qoFOrJR8mSqQ9keukSS2TIu180JbyzLbSBuJGm2TEkDA78b5zTbKmgNtTby8i8Xvo92n4jV45r_O3Bdydtul9H5vD4XOMCuPRN06-cfLNaP1PNDZDL535A4gbTN8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</creator><creatorcontrib>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</creatorcontrib><description>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 1450335209</identifier><identifier>ISBN: 9781450335201</identifier><identifier>EISBN: 9781479980529</identifier><identifier>EISBN: 1479980528</identifier><identifier>DOI: 10.1145/2744769.2744900</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Accuracy ; Active appearance model ; Arrays ; Artificial neural networks ; Hardware -- Electronic design automation -- Physical design (EDA) ; Hardware -- Hardware validation ; Hardware -- Very large scale integration design -- Application-specific VLSI designs ; Memristors ; Routing ; Training</subject><ispartof>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, p.1-6</ispartof><rights>2015 ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7167250$$EHTML$$P50$$Gieee$$H</linktohtml><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7167250$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Mao, Mengjie</creatorcontrib><creatorcontrib>Liu, Beiye</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Li, Boxun</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Barnell, Mark</creatorcontrib><creatorcontrib>Wu, Qing</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><title>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</title><title>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)</title><addtitle>DAC</addtitle><description>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</description><subject>Accuracy</subject><subject>Active appearance model</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA)</subject><subject>Hardware -- Hardware validation</subject><subject>Hardware -- Very large scale integration design -- Application-specific VLSI designs</subject><subject>Memristors</subject><subject>Routing</subject><subject>Training</subject><issn>0738-100X</issn><isbn>1450335209</isbn><isbn>9781450335201</isbn><isbn>9781479980529</isbn><isbn>1479980528</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNj01Lw0AQhkesYI05e_APeEmc_ZjdnaOUWoXSQlHwtmzMBKKWSuLFf--W5gd4emHmmZd5AG4U1kpZutfeWu-4PiYjnkHJPijrmQOS5nO4yhQaQxp5BnP0JlQK8e0SynH8QETlnFWk5jDbLTfba7jo0tco5ZQFvD4uXxZP1Xq7el48rKuUm36qoFOrJR8mSqQ9keukSS2TIu180JbyzLbSBuJGm2TEkDA78b5zTbKmgNtTby8i8Xvo92n4jV45r_O3Bdydtul9H5vD4XOMCuPRN06-cfLNaP1PNDZDL535A4gbTN8</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Liu, Xiaoxiao</creator><creator>Mao, Mengjie</creator><creator>Liu, Beiye</creator><creator>Li, Hai</creator><creator>Chen, Yiran</creator><creator>Li, Boxun</creator><creator>Wang, Yu</creator><creator>Jiang, Hao</creator><creator>Barnell, Mark</creator><creator>Wu, Qing</creator><creator>Yang, Jianhua</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150601</creationdate><title>RENO</title><author>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Active appearance model</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA)</topic><topic>Hardware -- Hardware validation</topic><topic>Hardware -- Very large scale integration design -- Application-specific VLSI designs</topic><topic>Memristors</topic><topic>Routing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Mao, Mengjie</creatorcontrib><creatorcontrib>Liu, Beiye</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Li, Boxun</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Barnell, Mark</creatorcontrib><creatorcontrib>Wu, Qing</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) (UW System Shared)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaoxiao</au><au>Mao, Mengjie</au><au>Liu, Beiye</au><au>Li, Hai</au><au>Chen, Yiran</au><au>Li, Boxun</au><au>Wang, Yu</au><au>Jiang, Hao</au><au>Barnell, Mark</au><au>Wu, Qing</au><au>Yang, Jianhua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</atitle><btitle>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)</btitle><stitle>DAC</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0738-100X</issn><isbn>1450335209</isbn><isbn>9781450335201</isbn><eisbn>9781479980529</eisbn><eisbn>1479980528</eisbn><abstract>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/2744769.2744900</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0738-100X |
ispartof | 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, p.1-6 |
issn | 0738-100X |
language | eng |
recordid | cdi_ieee_primary_7167250 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Active appearance model Arrays Artificial neural networks Hardware -- Electronic design automation -- Physical design (EDA) Hardware -- Hardware validation Hardware -- Very large scale integration design -- Application-specific VLSI designs Memristors Routing Training |
title | RENO: a high-efficient reconfigurable neuromorphic computing accelerator design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RENO:%20a%20high-efficient%20reconfigurable%20neuromorphic%20computing%20accelerator%20design&rft.btitle=2015%2052nd%20ACM/EDAC/IEEE%20Design%20Automation%20Conference%20(DAC)&rft.au=Liu,%20Xiaoxiao&rft.date=2015-06-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0738-100X&rft.isbn=1450335209&rft.isbn_list=9781450335201&rft_id=info:doi/10.1145/2744769.2744900&rft.eisbn=9781479980529&rft.eisbn_list=1479980528&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1145_2744769_2744900%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7167250&rfr_iscdi=true |