Loading…

RENO: a high-efficient reconfigurable neuromorphic computing accelerator design

Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Xiaoxiao, Mao, Mengjie, Liu, Beiye, Li, Hai, Chen, Yiran, Li, Boxun, Wang, Yu, Jiang, Hao, Barnell, Mark, Wu, Qing, Yang, Jianhua
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Liu, Xiaoxiao
Mao, Mengjie
Liu, Beiye
Li, Hai
Chen, Yiran
Li, Boxun
Wang, Yu
Jiang, Hao
Barnell, Mark
Wu, Qing
Yang, Jianhua
description Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.
doi_str_mv 10.1145/2744769.2744900
format conference_proceeding
fullrecord <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7167250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7167250</ieee_id><sourcerecordid>acm_books_10_1145_2744769_2744900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43</originalsourceid><addsrcrecordid>eNqNj01Lw0AQhkesYI05e_APeEmc_ZjdnaOUWoXSQlHwtmzMBKKWSuLFf--W5gd4emHmmZd5AG4U1kpZutfeWu-4PiYjnkHJPijrmQOS5nO4yhQaQxp5BnP0JlQK8e0SynH8QETlnFWk5jDbLTfba7jo0tco5ZQFvD4uXxZP1Xq7el48rKuUm36qoFOrJR8mSqQ9keukSS2TIu180JbyzLbSBuJGm2TEkDA78b5zTbKmgNtTby8i8Xvo92n4jV45r_O3Bdydtul9H5vD4XOMCuPRN06-cfLNaP1PNDZDL535A4gbTN8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</creator><creatorcontrib>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</creatorcontrib><description>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 1450335209</identifier><identifier>ISBN: 9781450335201</identifier><identifier>EISBN: 9781479980529</identifier><identifier>EISBN: 1479980528</identifier><identifier>DOI: 10.1145/2744769.2744900</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Accuracy ; Active appearance model ; Arrays ; Artificial neural networks ; Hardware -- Electronic design automation -- Physical design (EDA) ; Hardware -- Hardware validation ; Hardware -- Very large scale integration design -- Application-specific VLSI designs ; Memristors ; Routing ; Training</subject><ispartof>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, p.1-6</ispartof><rights>2015 ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7167250$$EHTML$$P50$$Gieee$$H</linktohtml><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7167250$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Mao, Mengjie</creatorcontrib><creatorcontrib>Liu, Beiye</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Li, Boxun</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Barnell, Mark</creatorcontrib><creatorcontrib>Wu, Qing</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><title>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</title><title>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)</title><addtitle>DAC</addtitle><description>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</description><subject>Accuracy</subject><subject>Active appearance model</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA)</subject><subject>Hardware -- Hardware validation</subject><subject>Hardware -- Very large scale integration design -- Application-specific VLSI designs</subject><subject>Memristors</subject><subject>Routing</subject><subject>Training</subject><issn>0738-100X</issn><isbn>1450335209</isbn><isbn>9781450335201</isbn><isbn>9781479980529</isbn><isbn>1479980528</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNj01Lw0AQhkesYI05e_APeEmc_ZjdnaOUWoXSQlHwtmzMBKKWSuLFf--W5gd4emHmmZd5AG4U1kpZutfeWu-4PiYjnkHJPijrmQOS5nO4yhQaQxp5BnP0JlQK8e0SynH8QETlnFWk5jDbLTfba7jo0tco5ZQFvD4uXxZP1Xq7el48rKuUm36qoFOrJR8mSqQ9keukSS2TIu180JbyzLbSBuJGm2TEkDA78b5zTbKmgNtTby8i8Xvo92n4jV45r_O3Bdydtul9H5vD4XOMCuPRN06-cfLNaP1PNDZDL535A4gbTN8</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Liu, Xiaoxiao</creator><creator>Mao, Mengjie</creator><creator>Liu, Beiye</creator><creator>Li, Hai</creator><creator>Chen, Yiran</creator><creator>Li, Boxun</creator><creator>Wang, Yu</creator><creator>Jiang, Hao</creator><creator>Barnell, Mark</creator><creator>Wu, Qing</creator><creator>Yang, Jianhua</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150601</creationdate><title>RENO</title><author>Liu, Xiaoxiao ; Mao, Mengjie ; Liu, Beiye ; Li, Hai ; Chen, Yiran ; Li, Boxun ; Wang, Yu ; Jiang, Hao ; Barnell, Mark ; Wu, Qing ; Yang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Active appearance model</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA)</topic><topic>Hardware -- Hardware validation</topic><topic>Hardware -- Very large scale integration design -- Application-specific VLSI designs</topic><topic>Memristors</topic><topic>Routing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Mao, Mengjie</creatorcontrib><creatorcontrib>Liu, Beiye</creatorcontrib><creatorcontrib>Li, Hai</creatorcontrib><creatorcontrib>Chen, Yiran</creatorcontrib><creatorcontrib>Li, Boxun</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Barnell, Mark</creatorcontrib><creatorcontrib>Wu, Qing</creatorcontrib><creatorcontrib>Yang, Jianhua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) (UW System Shared)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiaoxiao</au><au>Mao, Mengjie</au><au>Liu, Beiye</au><au>Li, Hai</au><au>Chen, Yiran</au><au>Li, Boxun</au><au>Wang, Yu</au><au>Jiang, Hao</au><au>Barnell, Mark</au><au>Wu, Qing</au><au>Yang, Jianhua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RENO: a high-efficient reconfigurable neuromorphic computing accelerator design</atitle><btitle>2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC)</btitle><stitle>DAC</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0738-100X</issn><isbn>1450335209</isbn><isbn>9781450335201</isbn><eisbn>9781479980529</eisbn><eisbn>1479980528</eisbn><abstract>Neuromorphic computing is recently gaining significant attention as a promising candidate to conquer the well-known von Neumann bottleneck. In this work, we propose RENO -- a efficient reconfigurable neuromorphic computing accelerator. RENO leverages the extremely efficient mixed-signal computation capability of memristor-based crossbar (MBC) arrays to speedup the executions of artificial neural networks (ANNs). The hierarchically arranged MBC arrays can be configured to a variety of ANN topologies through a mixed-signal interconnection network (M-Net). Simulation results on seven ANN applications show that compared to the baseline general-purpose processor, RENO can achieve on average 178.4x (27.06x) performance speedup and 184.2x (25.23x) energy savings in high-efficient multilayer perception (high-accurate auto-associative memory) implementation. Moreover, in the comparison to a pure digital neural processing unit (D-NPU) and a design with MBC arrays co-operating through a digital interconnection network, RENO still achieves the fastest execution time and the lowest energy consumption with similar computation accuracy.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/2744769.2744900</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0738-100X
ispartof 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, p.1-6
issn 0738-100X
language eng
recordid cdi_ieee_primary_7167250
source IEEE Xplore All Conference Series
subjects Accuracy
Active appearance model
Arrays
Artificial neural networks
Hardware -- Electronic design automation -- Physical design (EDA)
Hardware -- Hardware validation
Hardware -- Very large scale integration design -- Application-specific VLSI designs
Memristors
Routing
Training
title RENO: a high-efficient reconfigurable neuromorphic computing accelerator design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T15%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RENO:%20a%20high-efficient%20reconfigurable%20neuromorphic%20computing%20accelerator%20design&rft.btitle=2015%2052nd%20ACM/EDAC/IEEE%20Design%20Automation%20Conference%20(DAC)&rft.au=Liu,%20Xiaoxiao&rft.date=2015-06-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0738-100X&rft.isbn=1450335209&rft.isbn_list=9781450335201&rft_id=info:doi/10.1145/2744769.2744900&rft.eisbn=9781479980529&rft.eisbn_list=1479980528&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1145_2744769_2744900%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-82ad2e641a5a527556febad951526782457554ded859b23a3e35e996e77f6ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7167250&rfr_iscdi=true