Loading…
Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster
A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side ef...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 793 |
container_issue | |
container_start_page | 790 |
container_title | |
container_volume | |
creator | Noor, Fazal Alhaisoni, Majed Alshammari, Mashaan A. Ramachandran, Ravi P. |
description | A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5). |
doi_str_mv | 10.1109/ISCAS.2015.7168752 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7168752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7168752</ieee_id><sourcerecordid>7168752</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543</originalsourceid><addsrcrecordid>eNotkMtOwzAUBQ0CiVL6A7DxD6RcP5LYyyq8KlUCqbCuHPs6NUoaZDsL_p4gWM3mnFkMIbcM1oyBvt_um81-zYGV65pVqi75GVnpWjFZa62EZvqcLDgrVcFKXl6QBfCaFVIAvyLXKX0CcICKL0h6CCmHUzeFdJxBB3TBmp66OHWJ-jgO1NDexA5pwkxHT1NwSNF7tDnRKf2eDHWzJYZ2yuhohyfMwVLTd2MM-TjQ8TRP3hpq-ylljDfk0ps-4eqfS_Lx9PjevBS71-dts9kVgUuWC22d9koaWwk0lQUFEnQL1muunBS81dwqaNu2riSgkC1Hy6WvqjmLEaUUS3L35w2IePiKYTDx-_DfS_wAu2pd8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</creator><creatorcontrib>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</creatorcontrib><description>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</description><identifier>ISSN: 0271-4302</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9781479983919</identifier><identifier>EISBN: 1479983918</identifier><identifier>DOI: 10.1109/ISCAS.2015.7168752</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Drugs ; Genetic algorithms ; Optimization ; Set theory ; Sociology ; Statistics</subject><ispartof>2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, p.790-793</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7168752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7168752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Noor, Fazal</creatorcontrib><creatorcontrib>Alhaisoni, Majed</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><creatorcontrib>Ramachandran, Ravi P.</creatorcontrib><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><title>2015 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</description><subject>Biological cells</subject><subject>Drugs</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Set theory</subject><subject>Sociology</subject><subject>Statistics</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9781479983919</isbn><isbn>1479983918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAUBQ0CiVL6A7DxD6RcP5LYyyq8KlUCqbCuHPs6NUoaZDsL_p4gWM3mnFkMIbcM1oyBvt_um81-zYGV65pVqi75GVnpWjFZa62EZvqcLDgrVcFKXl6QBfCaFVIAvyLXKX0CcICKL0h6CCmHUzeFdJxBB3TBmp66OHWJ-jgO1NDexA5pwkxHT1NwSNF7tDnRKf2eDHWzJYZ2yuhohyfMwVLTd2MM-TjQ8TRP3hpq-ylljDfk0ps-4eqfS_Lx9PjevBS71-dts9kVgUuWC22d9koaWwk0lQUFEnQL1muunBS81dwqaNu2riSgkC1Hy6WvqjmLEaUUS3L35w2IePiKYTDx-_DfS_wAu2pd8Q</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Noor, Fazal</creator><creator>Alhaisoni, Majed</creator><creator>Alshammari, Mashaan A.</creator><creator>Ramachandran, Ravi P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150501</creationdate><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><author>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological cells</topic><topic>Drugs</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Set theory</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Noor, Fazal</creatorcontrib><creatorcontrib>Alhaisoni, Majed</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><creatorcontrib>Ramachandran, Ravi P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noor, Fazal</au><au>Alhaisoni, Majed</au><au>Alshammari, Mashaan A.</au><au>Ramachandran, Ravi P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</atitle><btitle>2015 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>790</spage><epage>793</epage><pages>790-793</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><eisbn>9781479983919</eisbn><eisbn>1479983918</eisbn><abstract>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2015.7168752</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0271-4302 |
ispartof | 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, p.790-793 |
issn | 0271-4302 2158-1525 |
language | eng |
recordid | cdi_ieee_primary_7168752 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Drugs Genetic algorithms Optimization Set theory Sociology Statistics |
title | Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distinguishing%20medical%20drugs%20from%20a%20large%20set%20of%20side%20effects%20using%20a%20distributed%20genetic%20algorithm%20on%20a%20PC%20cluster&rft.btitle=2015%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Noor,%20Fazal&rft.date=2015-05-01&rft.spage=790&rft.epage=793&rft.pages=790-793&rft.issn=0271-4302&rft.eissn=2158-1525&rft_id=info:doi/10.1109/ISCAS.2015.7168752&rft.eisbn=9781479983919&rft.eisbn_list=1479983918&rft_dat=%3Cieee_6IE%3E7168752%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7168752&rfr_iscdi=true |