Loading…

Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster

A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side ef...

Full description

Saved in:
Bibliographic Details
Main Authors: Noor, Fazal, Alhaisoni, Majed, Alshammari, Mashaan A., Ramachandran, Ravi P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 793
container_issue
container_start_page 790
container_title
container_volume
creator Noor, Fazal
Alhaisoni, Majed
Alshammari, Mashaan A.
Ramachandran, Ravi P.
description A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).
doi_str_mv 10.1109/ISCAS.2015.7168752
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7168752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7168752</ieee_id><sourcerecordid>7168752</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543</originalsourceid><addsrcrecordid>eNotkMtOwzAUBQ0CiVL6A7DxD6RcP5LYyyq8KlUCqbCuHPs6NUoaZDsL_p4gWM3mnFkMIbcM1oyBvt_um81-zYGV65pVqi75GVnpWjFZa62EZvqcLDgrVcFKXl6QBfCaFVIAvyLXKX0CcICKL0h6CCmHUzeFdJxBB3TBmp66OHWJ-jgO1NDexA5pwkxHT1NwSNF7tDnRKf2eDHWzJYZ2yuhohyfMwVLTd2MM-TjQ8TRP3hpq-ylljDfk0ps-4eqfS_Lx9PjevBS71-dts9kVgUuWC22d9koaWwk0lQUFEnQL1muunBS81dwqaNu2riSgkC1Hy6WvqjmLEaUUS3L35w2IePiKYTDx-_DfS_wAu2pd8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</creator><creatorcontrib>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</creatorcontrib><description>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</description><identifier>ISSN: 0271-4302</identifier><identifier>EISSN: 2158-1525</identifier><identifier>EISBN: 9781479983919</identifier><identifier>EISBN: 1479983918</identifier><identifier>DOI: 10.1109/ISCAS.2015.7168752</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Drugs ; Genetic algorithms ; Optimization ; Set theory ; Sociology ; Statistics</subject><ispartof>2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, p.790-793</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7168752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7168752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Noor, Fazal</creatorcontrib><creatorcontrib>Alhaisoni, Majed</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><creatorcontrib>Ramachandran, Ravi P.</creatorcontrib><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><title>2015 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</description><subject>Biological cells</subject><subject>Drugs</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Set theory</subject><subject>Sociology</subject><subject>Statistics</subject><issn>0271-4302</issn><issn>2158-1525</issn><isbn>9781479983919</isbn><isbn>1479983918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAUBQ0CiVL6A7DxD6RcP5LYyyq8KlUCqbCuHPs6NUoaZDsL_p4gWM3mnFkMIbcM1oyBvt_um81-zYGV65pVqi75GVnpWjFZa62EZvqcLDgrVcFKXl6QBfCaFVIAvyLXKX0CcICKL0h6CCmHUzeFdJxBB3TBmp66OHWJ-jgO1NDexA5pwkxHT1NwSNF7tDnRKf2eDHWzJYZ2yuhohyfMwVLTd2MM-TjQ8TRP3hpq-ylljDfk0ps-4eqfS_Lx9PjevBS71-dts9kVgUuWC22d9koaWwk0lQUFEnQL1muunBS81dwqaNu2riSgkC1Hy6WvqjmLEaUUS3L35w2IePiKYTDx-_DfS_wAu2pd8Q</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Noor, Fazal</creator><creator>Alhaisoni, Majed</creator><creator>Alshammari, Mashaan A.</creator><creator>Ramachandran, Ravi P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150501</creationdate><title>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</title><author>Noor, Fazal ; Alhaisoni, Majed ; Alshammari, Mashaan A. ; Ramachandran, Ravi P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological cells</topic><topic>Drugs</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Set theory</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Noor, Fazal</creatorcontrib><creatorcontrib>Alhaisoni, Majed</creatorcontrib><creatorcontrib>Alshammari, Mashaan A.</creatorcontrib><creatorcontrib>Ramachandran, Ravi P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noor, Fazal</au><au>Alhaisoni, Majed</au><au>Alshammari, Mashaan A.</au><au>Ramachandran, Ravi P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster</atitle><btitle>2015 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>790</spage><epage>793</epage><pages>790-793</pages><issn>0271-4302</issn><eissn>2158-1525</eissn><eisbn>9781479983919</eisbn><eisbn>1479983918</eisbn><abstract>A Distributed Genetic Algorithm to compute minimal reducts is presented for a novel biomedical application to distinguish 50 medical drugs from 228 side effects. The results indicate that 15 side effects are sufficient to differentiate among all the 50 drugs. In fact, any one of 4 sets of 15 side effects can be used. The Distributed Genetic Algorithm is inherently parallel, uses a variable mutation rate and is efficiently implemented on a PC cluster using 5, 10 and 20 nodes each with a Message Passing Interface. Results show that the distributed algorithm with 20 nodes uses much less computation time than two sequential methods (savings of about a factor of 5).</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2015.7168752</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0271-4302
ispartof 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, p.790-793
issn 0271-4302
2158-1525
language eng
recordid cdi_ieee_primary_7168752
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Drugs
Genetic algorithms
Optimization
Set theory
Sociology
Statistics
title Distinguishing medical drugs from a large set of side effects using a distributed genetic algorithm on a PC cluster
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distinguishing%20medical%20drugs%20from%20a%20large%20set%20of%20side%20effects%20using%20a%20distributed%20genetic%20algorithm%20on%20a%20PC%20cluster&rft.btitle=2015%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Noor,%20Fazal&rft.date=2015-05-01&rft.spage=790&rft.epage=793&rft.pages=790-793&rft.issn=0271-4302&rft.eissn=2158-1525&rft_id=info:doi/10.1109/ISCAS.2015.7168752&rft.eisbn=9781479983919&rft.eisbn_list=1479983918&rft_dat=%3Cieee_6IE%3E7168752%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-9cd9f84ac63ea6c080409b0cf928d432b92c80bbb7640e34b2ec24f66201a3543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7168752&rfr_iscdi=true