Loading…

Improved minimum squared error method for robust classification

In this paper, we improved the method of minimum squared error for robust classification by altering its classification rule. The minimum squared error method, is one of the methods to minimize the sum of the squared error between the output of the linear function and the desired output, which first...

Full description

Saved in:
Bibliographic Details
Main Authors: Fangzhi Zhu, Rui Yan, Yong Sun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 75
container_issue
container_start_page 71
container_title
container_volume
creator Fangzhi Zhu
Rui Yan
Yong Sun
description In this paper, we improved the method of minimum squared error for robust classification by altering its classification rule. The minimum squared error method, is one of the methods to minimize the sum of the squared error between the output of the linear function and the desired output, which first obtains the mapping that can best transform the training sample into its class label and then exploits the obtained mapping to predict the class label of the test sample. However, the improved method classifies all the test examples by comparing the difference of predicted class labels of test examples and training examples. Through experiment in section 4, we draw a conclusion that the improved MSE (IMSE) method can reduce the classification error and get a better classification result.
doi_str_mv 10.1109/CCIS.2014.7175705
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7175705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7175705</ieee_id><sourcerecordid>7175705</sourcerecordid><originalsourceid>FETCH-LOGICAL-i278t-6bb0b50db210cf36278bb89fb81e09cc726629055ae48b73a983cfb7210a9f9b3</originalsourceid><addsrcrecordid>eNo9UMtKxDAUjS9wHOcDxE1_oONN0jzuSqSMWhhwoYK7IUkTjEynY9IK_r0FR1fnyVkcQq4oLCkFvKnr5nnJgFZLRZVQII7IBa0UYlVxrI7JjHElS4Hi7eQvUAzY6X_A-TlZ5PwBABQlMs1m5Lbp9qn_8m3RxV3sxq7In6NJk_Yp9ano_PDet0WYaOrtmIfCbU3OMURnhtjvLslZMNvsFweck9f71Uv9WK6fHpr6bl1GpvRQSmvBCmgto-ACl5NprcZgNfWAzikmJUMQwvhKW8UNau6CVVPdYEDL5-T6dzd67zf7FDuTvjeHI_gPpaxOEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved minimum squared error method for robust classification</title><source>IEEE Xplore All Conference Series</source><creator>Fangzhi Zhu ; Rui Yan ; Yong Sun</creator><creatorcontrib>Fangzhi Zhu ; Rui Yan ; Yong Sun</creatorcontrib><description>In this paper, we improved the method of minimum squared error for robust classification by altering its classification rule. The minimum squared error method, is one of the methods to minimize the sum of the squared error between the output of the linear function and the desired output, which first obtains the mapping that can best transform the training sample into its class label and then exploits the obtained mapping to predict the class label of the test sample. However, the improved method classifies all the test examples by comparing the difference of predicted class labels of test examples and training examples. Through experiment in section 4, we draw a conclusion that the improved MSE (IMSE) method can reduce the classification error and get a better classification result.</description><identifier>ISSN: 2376-5933</identifier><identifier>ISBN: 1479947202</identifier><identifier>ISBN: 9781479947201</identifier><identifier>EISSN: 2376-595X</identifier><identifier>EISBN: 1479944394</identifier><identifier>EISBN: 9781479947195</identifier><identifier>EISBN: 1479947199</identifier><identifier>EISBN: 9781479944392</identifier><identifier>DOI: 10.1109/CCIS.2014.7175705</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Classification algorithms ; Face recognition ; Image recognition ; Image resolution ; Minimum squared error ; Pattern recognition ; Robustness</subject><ispartof>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 2014, p.71-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7175705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7175705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fangzhi Zhu</creatorcontrib><creatorcontrib>Rui Yan</creatorcontrib><creatorcontrib>Yong Sun</creatorcontrib><title>Improved minimum squared error method for robust classification</title><title>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems</title><addtitle>CCIS</addtitle><description>In this paper, we improved the method of minimum squared error for robust classification by altering its classification rule. The minimum squared error method, is one of the methods to minimize the sum of the squared error between the output of the linear function and the desired output, which first obtains the mapping that can best transform the training sample into its class label and then exploits the obtained mapping to predict the class label of the test sample. However, the improved method classifies all the test examples by comparing the difference of predicted class labels of test examples and training examples. Through experiment in section 4, we draw a conclusion that the improved MSE (IMSE) method can reduce the classification error and get a better classification result.</description><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>Image resolution</subject><subject>Minimum squared error</subject><subject>Pattern recognition</subject><subject>Robustness</subject><issn>2376-5933</issn><issn>2376-595X</issn><isbn>1479947202</isbn><isbn>9781479947201</isbn><isbn>1479944394</isbn><isbn>9781479947195</isbn><isbn>1479947199</isbn><isbn>9781479944392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtKxDAUjS9wHOcDxE1_oONN0jzuSqSMWhhwoYK7IUkTjEynY9IK_r0FR1fnyVkcQq4oLCkFvKnr5nnJgFZLRZVQII7IBa0UYlVxrI7JjHElS4Hi7eQvUAzY6X_A-TlZ5PwBABQlMs1m5Lbp9qn_8m3RxV3sxq7In6NJk_Yp9ano_PDet0WYaOrtmIfCbU3OMURnhtjvLslZMNvsFweck9f71Uv9WK6fHpr6bl1GpvRQSmvBCmgto-ACl5NprcZgNfWAzikmJUMQwvhKW8UNau6CVVPdYEDL5-T6dzd67zf7FDuTvjeHI_gPpaxOEg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Fangzhi Zhu</creator><creator>Rui Yan</creator><creator>Yong Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20140101</creationdate><title>Improved minimum squared error method for robust classification</title><author>Fangzhi Zhu ; Rui Yan ; Yong Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i278t-6bb0b50db210cf36278bb89fb81e09cc726629055ae48b73a983cfb7210a9f9b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>Image resolution</topic><topic>Minimum squared error</topic><topic>Pattern recognition</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Fangzhi Zhu</creatorcontrib><creatorcontrib>Rui Yan</creatorcontrib><creatorcontrib>Yong Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fangzhi Zhu</au><au>Rui Yan</au><au>Yong Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved minimum squared error method for robust classification</atitle><btitle>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems</btitle><stitle>CCIS</stitle><date>2014-01-01</date><risdate>2014</risdate><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>2376-5933</issn><eissn>2376-595X</eissn><isbn>1479947202</isbn><isbn>9781479947201</isbn><eisbn>1479944394</eisbn><eisbn>9781479947195</eisbn><eisbn>1479947199</eisbn><eisbn>9781479944392</eisbn><abstract>In this paper, we improved the method of minimum squared error for robust classification by altering its classification rule. The minimum squared error method, is one of the methods to minimize the sum of the squared error between the output of the linear function and the desired output, which first obtains the mapping that can best transform the training sample into its class label and then exploits the obtained mapping to predict the class label of the test sample. However, the improved method classifies all the test examples by comparing the difference of predicted class labels of test examples and training examples. Through experiment in section 4, we draw a conclusion that the improved MSE (IMSE) method can reduce the classification error and get a better classification result.</abstract><pub>IEEE</pub><doi>10.1109/CCIS.2014.7175705</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-5933
ispartof 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 2014, p.71-75
issn 2376-5933
2376-595X
language eng
recordid cdi_ieee_primary_7175705
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Classification algorithms
Face recognition
Image recognition
Image resolution
Minimum squared error
Pattern recognition
Robustness
title Improved minimum squared error method for robust classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20minimum%20squared%20error%20method%20for%20robust%20classification&rft.btitle=2014%20IEEE%203rd%20International%20Conference%20on%20Cloud%20Computing%20and%20Intelligence%20Systems&rft.au=Fangzhi%20Zhu&rft.date=2014-01-01&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=2376-5933&rft.eissn=2376-595X&rft.isbn=1479947202&rft.isbn_list=9781479947201&rft_id=info:doi/10.1109/CCIS.2014.7175705&rft.eisbn=1479944394&rft.eisbn_list=9781479947195&rft.eisbn_list=1479947199&rft.eisbn_list=9781479944392&rft_dat=%3Cieee_CHZPO%3E7175705%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i278t-6bb0b50db210cf36278bb89fb81e09cc726629055ae48b73a983cfb7210a9f9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7175705&rfr_iscdi=true