Loading…

Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network

High concentration photovoltaic is a new type of solar power generation mode, which has better photoelectric conversion rate but is more vulnerable to weather factors. Therefore, accurate and efficient forecasting methods have important significance of increasing the security and stability of the so...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhengqiu Yang, Yapei Cao, Jiapeng Xiu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 383
container_issue
container_start_page 380
container_title
container_volume
creator Zhengqiu Yang
Yapei Cao
Jiapeng Xiu
description High concentration photovoltaic is a new type of solar power generation mode, which has better photoelectric conversion rate but is more vulnerable to weather factors. Therefore, accurate and efficient forecasting methods have important significance of increasing the security and stability of the solar power station. This paper focuses on the short-term forecasting method which aims at forecasting power generation in five minutes. This paper uses BP neural network(BP-NN) as the basic forecasting model and applies generic algorithm(GA) to optimize the weights and thresholds of BP-NN. The experimental results show that, the prediction effect of this method is ideal.
doi_str_mv 10.1109/CCIS.2014.7175764
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7175764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7175764</ieee_id><sourcerecordid>7175764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i278t-f8334d69c8ed523ce03a19625b6d056c6135ba8a64b8b687df9c77b4059e79313</originalsourceid><addsrcrecordid>eNo9kNtKw0AYhNcTWGsfQLzZF0jd8-FSg4dCwYIK3pVN9k-bmmbLZrX07U21ejUwwzcMg9AVJWNKib3J88nLmBEqxppqqZU4QhdUaGuF4FYcowHjWmXSyveTv0Azwk7_A87P0ajrVoQQapVlhg3Qaha2EPECWogu1aHFVYhQui7V7QKvg4dm7-DNMqTwFZrk6hK7GN0OF64Dj3viB97bzSLEOi3X2LUe381wC5_RNb2kbYgfl-isck0Ho4MO0dvD_Wv-lE2fHyf57TSrmTYpqwznwitbGvCS8RIId_1cJgvliVSlolwWzjglClMoo31lS60LQaQFbTnlQ3T921sDwHwT67WLu_nhM_4NIjldUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network</title><source>IEEE Xplore All Conference Series</source><creator>Zhengqiu Yang ; Yapei Cao ; Jiapeng Xiu</creator><creatorcontrib>Zhengqiu Yang ; Yapei Cao ; Jiapeng Xiu</creatorcontrib><description>High concentration photovoltaic is a new type of solar power generation mode, which has better photoelectric conversion rate but is more vulnerable to weather factors. Therefore, accurate and efficient forecasting methods have important significance of increasing the security and stability of the solar power station. This paper focuses on the short-term forecasting method which aims at forecasting power generation in five minutes. This paper uses BP neural network(BP-NN) as the basic forecasting model and applies generic algorithm(GA) to optimize the weights and thresholds of BP-NN. The experimental results show that, the prediction effect of this method is ideal.</description><identifier>ISSN: 2376-5933</identifier><identifier>ISBN: 1479947202</identifier><identifier>ISBN: 9781479947201</identifier><identifier>EISSN: 2376-595X</identifier><identifier>EISBN: 1479944394</identifier><identifier>EISBN: 9781479947195</identifier><identifier>EISBN: 1479947199</identifier><identifier>EISBN: 9781479944392</identifier><identifier>DOI: 10.1109/CCIS.2014.7175764</identifier><language>eng</language><publisher>IEEE</publisher><subject>BP Neural network ; Forecasting ; Genetic algorithm ; Genetic algorithms ; Neural networks ; Photovoltaic generation (PV) ; Photovoltaic systems ; Predictive models ; Short-term forecasting</subject><ispartof>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 2014, p.380-383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7175764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7175764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhengqiu Yang</creatorcontrib><creatorcontrib>Yapei Cao</creatorcontrib><creatorcontrib>Jiapeng Xiu</creatorcontrib><title>Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network</title><title>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems</title><addtitle>CCIS</addtitle><description>High concentration photovoltaic is a new type of solar power generation mode, which has better photoelectric conversion rate but is more vulnerable to weather factors. Therefore, accurate and efficient forecasting methods have important significance of increasing the security and stability of the solar power station. This paper focuses on the short-term forecasting method which aims at forecasting power generation in five minutes. This paper uses BP neural network(BP-NN) as the basic forecasting model and applies generic algorithm(GA) to optimize the weights and thresholds of BP-NN. The experimental results show that, the prediction effect of this method is ideal.</description><subject>BP Neural network</subject><subject>Forecasting</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Photovoltaic generation (PV)</subject><subject>Photovoltaic systems</subject><subject>Predictive models</subject><subject>Short-term forecasting</subject><issn>2376-5933</issn><issn>2376-595X</issn><isbn>1479947202</isbn><isbn>9781479947201</isbn><isbn>1479944394</isbn><isbn>9781479947195</isbn><isbn>1479947199</isbn><isbn>9781479944392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kNtKw0AYhNcTWGsfQLzZF0jd8-FSg4dCwYIK3pVN9k-bmmbLZrX07U21ejUwwzcMg9AVJWNKib3J88nLmBEqxppqqZU4QhdUaGuF4FYcowHjWmXSyveTv0Azwk7_A87P0ajrVoQQapVlhg3Qaha2EPECWogu1aHFVYhQui7V7QKvg4dm7-DNMqTwFZrk6hK7GN0OF64Dj3viB97bzSLEOi3X2LUe381wC5_RNb2kbYgfl-isck0Ho4MO0dvD_Wv-lE2fHyf57TSrmTYpqwznwitbGvCS8RIId_1cJgvliVSlolwWzjglClMoo31lS60LQaQFbTnlQ3T921sDwHwT67WLu_nhM_4NIjldUw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zhengqiu Yang</creator><creator>Yapei Cao</creator><creator>Jiapeng Xiu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20141101</creationdate><title>Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network</title><author>Zhengqiu Yang ; Yapei Cao ; Jiapeng Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i278t-f8334d69c8ed523ce03a19625b6d056c6135ba8a64b8b687df9c77b4059e79313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BP Neural network</topic><topic>Forecasting</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Photovoltaic generation (PV)</topic><topic>Photovoltaic systems</topic><topic>Predictive models</topic><topic>Short-term forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhengqiu Yang</creatorcontrib><creatorcontrib>Yapei Cao</creatorcontrib><creatorcontrib>Jiapeng Xiu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhengqiu Yang</au><au>Yapei Cao</au><au>Jiapeng Xiu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network</atitle><btitle>2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems</btitle><stitle>CCIS</stitle><date>2014-11-01</date><risdate>2014</risdate><spage>380</spage><epage>383</epage><pages>380-383</pages><issn>2376-5933</issn><eissn>2376-595X</eissn><isbn>1479947202</isbn><isbn>9781479947201</isbn><eisbn>1479944394</eisbn><eisbn>9781479947195</eisbn><eisbn>1479947199</eisbn><eisbn>9781479944392</eisbn><abstract>High concentration photovoltaic is a new type of solar power generation mode, which has better photoelectric conversion rate but is more vulnerable to weather factors. Therefore, accurate and efficient forecasting methods have important significance of increasing the security and stability of the solar power station. This paper focuses on the short-term forecasting method which aims at forecasting power generation in five minutes. This paper uses BP neural network(BP-NN) as the basic forecasting model and applies generic algorithm(GA) to optimize the weights and thresholds of BP-NN. The experimental results show that, the prediction effect of this method is ideal.</abstract><pub>IEEE</pub><doi>10.1109/CCIS.2014.7175764</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-5933
ispartof 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, 2014, p.380-383
issn 2376-5933
2376-595X
language eng
recordid cdi_ieee_primary_7175764
source IEEE Xplore All Conference Series
subjects BP Neural network
Forecasting
Genetic algorithm
Genetic algorithms
Neural networks
Photovoltaic generation (PV)
Photovoltaic systems
Predictive models
Short-term forecasting
title Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power%20generation%20forecasting%20model%20for%20photovoltaic%20array%20based%20on%20generic%20algorithm%20and%20BP%20neural%20network&rft.btitle=2014%20IEEE%203rd%20International%20Conference%20on%20Cloud%20Computing%20and%20Intelligence%20Systems&rft.au=Zhengqiu%20Yang&rft.date=2014-11-01&rft.spage=380&rft.epage=383&rft.pages=380-383&rft.issn=2376-5933&rft.eissn=2376-595X&rft.isbn=1479947202&rft.isbn_list=9781479947201&rft_id=info:doi/10.1109/CCIS.2014.7175764&rft.eisbn=1479944394&rft.eisbn_list=9781479947195&rft.eisbn_list=1479947199&rft.eisbn_list=9781479944392&rft_dat=%3Cieee_CHZPO%3E7175764%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i278t-f8334d69c8ed523ce03a19625b6d056c6135ba8a64b8b687df9c77b4059e79313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7175764&rfr_iscdi=true