Loading…

Deformable multiple-kernel based human tracking using a moving camera

In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-s...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Hou, Wanggen Wan, Kuan-Hui Lee, Jenq-Neng Hwang, Okopal, Greg, Pitton, James
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2253
container_issue
container_start_page 2249
container_title
container_volume
creator Li Hou
Wanggen Wan
Kuan-Hui Lee
Jenq-Neng Hwang
Okopal, Greg
Pitton, James
description In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.
doi_str_mv 10.1109/ICASSP.2015.7178371
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7178371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7178371</ieee_id><sourcerecordid>7178371</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43</originalsourceid><addsrcrecordid>eNotkNtKw0AURUdRsNZ-QV_yAxPPmZnM5VFqvUBBoQq-lZPkRGMzaclF8O9tsS9r76fFZgsxR0gRIdw-L-7W69dUAWapQ-e1wzNxjcY6bUNw7lxMlHZBYoCPCzHBTIG0aMKVmPX9NwCgs844MxHLe652XaS84SSOzVDvG5Zb7lpukpx6LpOvMVKbDB0V27r9TMb-SEri7udYCorc0Y24rKjpeXbKqXh_WL4tnuTq5fGwdSVrBX6QJlehAoXobWmC98ScVQ60LRGUwRK0CmUesKLM5j6zQAcoUpZU4QMbPRXzf2_NzJt9V0fqfjenB_QfWv9NJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deformable multiple-kernel based human tracking using a moving camera</title><source>IEEE Xplore All Conference Series</source><creator>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</creator><creatorcontrib>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</creatorcontrib><description>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1467369977</identifier><identifier>EISBN: 9781467369978</identifier><identifier>DOI: 10.1109/ICASSP.2015.7178371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Color ; Deformable models ; deformable part model ; Detectors ; human tracking ; Kernel ; kernel-based tracking ; Target tracking</subject><ispartof>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.2249-2253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7178371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7178371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Hou</creatorcontrib><creatorcontrib>Wanggen Wan</creatorcontrib><creatorcontrib>Kuan-Hui Lee</creatorcontrib><creatorcontrib>Jenq-Neng Hwang</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Pitton, James</creatorcontrib><title>Deformable multiple-kernel based human tracking using a moving camera</title><title>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</description><subject>Cameras</subject><subject>Color</subject><subject>Deformable models</subject><subject>deformable part model</subject><subject>Detectors</subject><subject>human tracking</subject><subject>Kernel</subject><subject>kernel-based tracking</subject><subject>Target tracking</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467369977</isbn><isbn>9781467369978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AURUdRsNZ-QV_yAxPPmZnM5VFqvUBBoQq-lZPkRGMzaclF8O9tsS9r76fFZgsxR0gRIdw-L-7W69dUAWapQ-e1wzNxjcY6bUNw7lxMlHZBYoCPCzHBTIG0aMKVmPX9NwCgs844MxHLe652XaS84SSOzVDvG5Zb7lpukpx6LpOvMVKbDB0V27r9TMb-SEri7udYCorc0Y24rKjpeXbKqXh_WL4tnuTq5fGwdSVrBX6QJlehAoXobWmC98ScVQ60LRGUwRK0CmUesKLM5j6zQAcoUpZU4QMbPRXzf2_NzJt9V0fqfjenB_QfWv9NJQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Li Hou</creator><creator>Wanggen Wan</creator><creator>Kuan-Hui Lee</creator><creator>Jenq-Neng Hwang</creator><creator>Okopal, Greg</creator><creator>Pitton, James</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150401</creationdate><title>Deformable multiple-kernel based human tracking using a moving camera</title><author>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cameras</topic><topic>Color</topic><topic>Deformable models</topic><topic>deformable part model</topic><topic>Detectors</topic><topic>human tracking</topic><topic>Kernel</topic><topic>kernel-based tracking</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Hou</creatorcontrib><creatorcontrib>Wanggen Wan</creatorcontrib><creatorcontrib>Kuan-Hui Lee</creatorcontrib><creatorcontrib>Jenq-Neng Hwang</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Pitton, James</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Hou</au><au>Wanggen Wan</au><au>Kuan-Hui Lee</au><au>Jenq-Neng Hwang</au><au>Okopal, Greg</au><au>Pitton, James</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deformable multiple-kernel based human tracking using a moving camera</atitle><btitle>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2015-04-01</date><risdate>2015</risdate><spage>2249</spage><epage>2253</epage><pages>2249-2253</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>1467369977</eisbn><eisbn>9781467369978</eisbn><abstract>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2015.7178371</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.2249-2253
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_7178371
source IEEE Xplore All Conference Series
subjects Cameras
Color
Deformable models
deformable part model
Detectors
human tracking
Kernel
kernel-based tracking
Target tracking
title Deformable multiple-kernel based human tracking using a moving camera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deformable%20multiple-kernel%20based%20human%20tracking%20using%20a%20moving%20camera&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Li%20Hou&rft.date=2015-04-01&rft.spage=2249&rft.epage=2253&rft.pages=2249-2253&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2015.7178371&rft.eisbn=1467369977&rft.eisbn_list=9781467369978&rft_dat=%3Cieee_CHZPO%3E7178371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7178371&rfr_iscdi=true