Loading…
Deformable multiple-kernel based human tracking using a moving camera
In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-s...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2253 |
container_issue | |
container_start_page | 2249 |
container_title | |
container_volume | |
creator | Li Hou Wanggen Wan Kuan-Hui Lee Jenq-Neng Hwang Okopal, Greg Pitton, James |
description | In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios. |
doi_str_mv | 10.1109/ICASSP.2015.7178371 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7178371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7178371</ieee_id><sourcerecordid>7178371</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43</originalsourceid><addsrcrecordid>eNotkNtKw0AURUdRsNZ-QV_yAxPPmZnM5VFqvUBBoQq-lZPkRGMzaclF8O9tsS9r76fFZgsxR0gRIdw-L-7W69dUAWapQ-e1wzNxjcY6bUNw7lxMlHZBYoCPCzHBTIG0aMKVmPX9NwCgs844MxHLe652XaS84SSOzVDvG5Zb7lpukpx6LpOvMVKbDB0V27r9TMb-SEri7udYCorc0Y24rKjpeXbKqXh_WL4tnuTq5fGwdSVrBX6QJlehAoXobWmC98ScVQ60LRGUwRK0CmUesKLM5j6zQAcoUpZU4QMbPRXzf2_NzJt9V0fqfjenB_QfWv9NJQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deformable multiple-kernel based human tracking using a moving camera</title><source>IEEE Xplore All Conference Series</source><creator>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</creator><creatorcontrib>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</creatorcontrib><description>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1467369977</identifier><identifier>EISBN: 9781467369978</identifier><identifier>DOI: 10.1109/ICASSP.2015.7178371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Color ; Deformable models ; deformable part model ; Detectors ; human tracking ; Kernel ; kernel-based tracking ; Target tracking</subject><ispartof>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.2249-2253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7178371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7178371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Hou</creatorcontrib><creatorcontrib>Wanggen Wan</creatorcontrib><creatorcontrib>Kuan-Hui Lee</creatorcontrib><creatorcontrib>Jenq-Neng Hwang</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Pitton, James</creatorcontrib><title>Deformable multiple-kernel based human tracking using a moving camera</title><title>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</description><subject>Cameras</subject><subject>Color</subject><subject>Deformable models</subject><subject>deformable part model</subject><subject>Detectors</subject><subject>human tracking</subject><subject>Kernel</subject><subject>kernel-based tracking</subject><subject>Target tracking</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467369977</isbn><isbn>9781467369978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AURUdRsNZ-QV_yAxPPmZnM5VFqvUBBoQq-lZPkRGMzaclF8O9tsS9r76fFZgsxR0gRIdw-L-7W69dUAWapQ-e1wzNxjcY6bUNw7lxMlHZBYoCPCzHBTIG0aMKVmPX9NwCgs844MxHLe652XaS84SSOzVDvG5Zb7lpukpx6LpOvMVKbDB0V27r9TMb-SEri7udYCorc0Y24rKjpeXbKqXh_WL4tnuTq5fGwdSVrBX6QJlehAoXobWmC98ScVQ60LRGUwRK0CmUesKLM5j6zQAcoUpZU4QMbPRXzf2_NzJt9V0fqfjenB_QfWv9NJQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Li Hou</creator><creator>Wanggen Wan</creator><creator>Kuan-Hui Lee</creator><creator>Jenq-Neng Hwang</creator><creator>Okopal, Greg</creator><creator>Pitton, James</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150401</creationdate><title>Deformable multiple-kernel based human tracking using a moving camera</title><author>Li Hou ; Wanggen Wan ; Kuan-Hui Lee ; Jenq-Neng Hwang ; Okopal, Greg ; Pitton, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cameras</topic><topic>Color</topic><topic>Deformable models</topic><topic>deformable part model</topic><topic>Detectors</topic><topic>human tracking</topic><topic>Kernel</topic><topic>kernel-based tracking</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Hou</creatorcontrib><creatorcontrib>Wanggen Wan</creatorcontrib><creatorcontrib>Kuan-Hui Lee</creatorcontrib><creatorcontrib>Jenq-Neng Hwang</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Pitton, James</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Hou</au><au>Wanggen Wan</au><au>Kuan-Hui Lee</au><au>Jenq-Neng Hwang</au><au>Okopal, Greg</au><au>Pitton, James</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deformable multiple-kernel based human tracking using a moving camera</atitle><btitle>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2015-04-01</date><risdate>2015</risdate><spage>2249</spage><epage>2253</epage><pages>2249-2253</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>1467369977</eisbn><eisbn>9781467369978</eisbn><abstract>In this paper, we propose an innovative human tracking algorithm, which efficiently integrates the deformable part model (DPM) into the multiple-kernel based tracking using a moving camera. By representing each part model of a DPM detected human as a kernel, the proposed algorithm iteratively mean-shift the kernels (i.e., part models) based on color appearance and histogram of gradient (HOG) features. More specifically, the color appearance features, in terms of kernel histogram, are used for tracking each body part from one frame to the next, the deformation cost provided by DPM detector is further used to constrain the movement of each body kernel based on the HOG features. The proposed deformable multiple-kernel (DMK) tracking algorithm takes advantage of not only low computation owing to the kernel-based tracking, but also robustness of the DPM detector. Experimental results have shown the favorable performance of the proposed algorithm, which can successfully track human using a moving camera more accurately under different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2015.7178371</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.2249-2253 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_7178371 |
source | IEEE Xplore All Conference Series |
subjects | Cameras Color Deformable models deformable part model Detectors human tracking Kernel kernel-based tracking Target tracking |
title | Deformable multiple-kernel based human tracking using a moving camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deformable%20multiple-kernel%20based%20human%20tracking%20using%20a%20moving%20camera&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Li%20Hou&rft.date=2015-04-01&rft.spage=2249&rft.epage=2253&rft.pages=2249-2253&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2015.7178371&rft.eisbn=1467369977&rft.eisbn_list=9781467369978&rft_dat=%3Cieee_CHZPO%3E7178371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-4b29f021186d4988aee5f7036d10241d0329db91fa56b8560a8562a26a2c89e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7178371&rfr_iscdi=true |