Loading…

Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks

Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variat...

Full description

Saved in:
Bibliographic Details
Main Authors: Sainath, Tara N., Vinyals, Oriol, Senior, Andrew, Sak, Hasim
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-3d744788f10664f20ba5544103b00ddb5ae7eae43f290e5e6dfb688b1eff9ecd3
cites
container_end_page 4584
container_issue
container_start_page 4580
container_title
container_volume
creator Sainath, Tara N.
Vinyals, Oriol
Senior, Andrew
Sak, Hasim
description Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space. In this paper, we take advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture. We explore the proposed architecture, which we call CLDNN, on a variety of large vocabulary tasks, varying from 200 to 2,000 hours. We find that the CLDNN provides a 4-6% relative improvement in WER over an LSTM, the strongest of the three individual models.
doi_str_mv 10.1109/ICASSP.2015.7178838
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7178838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7178838</ieee_id><sourcerecordid>7178838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3d744788f10664f20ba5544103b00ddb5ae7eae43f290e5e6dfb688b1eff9ecd3</originalsourceid><addsrcrecordid>eNotkEtOwzAUAA0CiVJ6gm58gKa8Fzt2vEThK8JHapHYVU7yDIUkrpwElNtTia5mNxoNY3OEJSKYy4fsarV6XcaAyVKjTlORHrFzlEoLZYzWx2wSC20iNPB-wiaYxBAplOaMzbruCwBQKy21nLDHzLc_vh76rW9tveC5bz_46tOHPlpTaPgTNT6MC-6Guh556duWyp4qfk204880BFvv0f_68N1dsFNn645mB07Z2-3NOruP8pe7fXEelRJ0H4lKS7lvdghKSRdDYZNESgRRAFRVkVjSZEkKFxughFTlCpWmBZJzhspKTNn837slos0ubBsbxs3hg_gDfj9Qhg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Sainath, Tara N. ; Vinyals, Oriol ; Senior, Andrew ; Sak, Hasim</creator><creatorcontrib>Sainath, Tara N. ; Vinyals, Oriol ; Senior, Andrew ; Sak, Hasim</creatorcontrib><description>Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space. In this paper, we take advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture. We explore the proposed architecture, which we call CLDNN, on a variety of large vocabulary tasks, varying from 200 to 2,000 hours. We find that the CLDNN provides a 4-6% relative improvement in WER over an LSTM, the strongest of the three individual models.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1467369977</identifier><identifier>EISBN: 9781467369978</identifier><identifier>DOI: 10.1109/ICASSP.2015.7178838</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Hidden Markov models ; Neural networks ; Noise measurement ; Speech ; Speech recognition ; Training</subject><ispartof>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.4580-4584</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3d744788f10664f20ba5544103b00ddb5ae7eae43f290e5e6dfb688b1eff9ecd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7178838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7178838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sainath, Tara N.</creatorcontrib><creatorcontrib>Vinyals, Oriol</creatorcontrib><creatorcontrib>Senior, Andrew</creatorcontrib><creatorcontrib>Sak, Hasim</creatorcontrib><title>Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks</title><title>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space. In this paper, we take advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture. We explore the proposed architecture, which we call CLDNN, on a variety of large vocabulary tasks, varying from 200 to 2,000 hours. We find that the CLDNN provides a 4-6% relative improvement in WER over an LSTM, the strongest of the three individual models.</description><subject>Context</subject><subject>Hidden Markov models</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Training</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467369977</isbn><isbn>9781467369978</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEtOwzAUAA0CiVJ6gm58gKa8Fzt2vEThK8JHapHYVU7yDIUkrpwElNtTia5mNxoNY3OEJSKYy4fsarV6XcaAyVKjTlORHrFzlEoLZYzWx2wSC20iNPB-wiaYxBAplOaMzbruCwBQKy21nLDHzLc_vh76rW9tveC5bz_46tOHPlpTaPgTNT6MC-6Guh556duWyp4qfk204880BFvv0f_68N1dsFNn645mB07Z2-3NOruP8pe7fXEelRJ0H4lKS7lvdghKSRdDYZNESgRRAFRVkVjSZEkKFxughFTlCpWmBZJzhspKTNn837slos0ubBsbxs3hg_gDfj9Qhg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Sainath, Tara N.</creator><creator>Vinyals, Oriol</creator><creator>Senior, Andrew</creator><creator>Sak, Hasim</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150401</creationdate><title>Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks</title><author>Sainath, Tara N. ; Vinyals, Oriol ; Senior, Andrew ; Sak, Hasim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3d744788f10664f20ba5544103b00ddb5ae7eae43f290e5e6dfb688b1eff9ecd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Context</topic><topic>Hidden Markov models</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sainath, Tara N.</creatorcontrib><creatorcontrib>Vinyals, Oriol</creatorcontrib><creatorcontrib>Senior, Andrew</creatorcontrib><creatorcontrib>Sak, Hasim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sainath, Tara N.</au><au>Vinyals, Oriol</au><au>Senior, Andrew</au><au>Sak, Hasim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks</atitle><btitle>2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2015-04-01</date><risdate>2015</risdate><spage>4580</spage><epage>4584</epage><pages>4580-4584</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>1467369977</eisbn><eisbn>9781467369978</eisbn><abstract>Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space. In this paper, we take advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture. We explore the proposed architecture, which we call CLDNN, on a variety of large vocabulary tasks, varying from 200 to 2,000 hours. We find that the CLDNN provides a 4-6% relative improvement in WER over an LSTM, the strongest of the three individual models.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2015.7178838</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, p.4580-4584
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_7178838
source IEEE Xplore All Conference Series
subjects Context
Hidden Markov models
Neural networks
Noise measurement
Speech
Speech recognition
Training
title Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional,%20Long%20Short-Term%20Memory,%20fully%20connected%20Deep%20Neural%20Networks&rft.btitle=2015%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Sainath,%20Tara%20N.&rft.date=2015-04-01&rft.spage=4580&rft.epage=4584&rft.pages=4580-4584&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2015.7178838&rft.eisbn=1467369977&rft.eisbn_list=9781467369978&rft_dat=%3Cieee_CHZPO%3E7178838%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3d744788f10664f20ba5544103b00ddb5ae7eae43f290e5e6dfb688b1eff9ecd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7178838&rfr_iscdi=true