Loading…

A ride-through power structure for CFETR

The China fusion engineering test reactor (CFETR) is an ITER-like tokamak system for fusion energy development. It could output 50-200 MW fusion power in phase I for demonstrating power generation with complete structure of fusion power plant, and 1 GW output power can be expected in phase II. Its I...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2015-08, Vol.22 (4), p.2081-2086
Main Authors: Li, Hua, Li, Ge, Qu, Lu, Fu, Peng, Wang, Ying, Chen, Qiangjian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The China fusion engineering test reactor (CFETR) is an ITER-like tokamak system for fusion energy development. It could output 50-200 MW fusion power in phase I for demonstrating power generation with complete structure of fusion power plant, and 1 GW output power can be expected in phase II. Its ITER-like HV substation receives power from the 500 kV transmission grid for powering its pulsed power electric network (PPEN) and steady-state electric power network (SSEN). This paper describes the concept design of the electric power system, with emphasis on its turbine generator implemented with flexible doubly fed induction generator (DFIG). DFIG has ride through ability during the plasma-off period. Its capability diagram is configured to analyze its operation range. Similar to ITER, the CFETR also requires about 1 GVar reactive power to be compensated. Based on this requirement, the generator is expected to generate part of reactive power to compensate and stabilize the local power network.
ISSN:1070-9878
1558-4135
DOI:10.1109/TDEI.2015.004949