Loading…

A New Multistatic FMCW Radar Architecture by Over-the-Air Deramping

Frequency modulated continuous wave (FMCW) radar is widely adopted solution for low-cost, short to medium range sensing applications. However, a multistatic FMCW architecture suitable for meeting the low-cost requirement has yet to be developed. This paper introduces a new FMCW radar architecture th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2015-12, Vol.15 (12), p.7045-7053
Main Authors: Ash, Matthew, Ritchie, Matthew, Chetty, Kevin, Brennan, Paul V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Frequency modulated continuous wave (FMCW) radar is widely adopted solution for low-cost, short to medium range sensing applications. However, a multistatic FMCW architecture suitable for meeting the low-cost requirement has yet to be developed. This paper introduces a new FMCW radar architecture that implements a novel technique of synchronizing nodes in a multistatic system, known as over-the-air deramping (OTAD). The architecture uses a dual-frequency design to simultaneously broadcast an FMCW waveform on a lower frequency channel directly to a receiver as a reference synchronization signal, and a higher frequency channel to illuminate the measurement scene. The target echo is deramped in hardware with the synchronization signal. OTAD allows for low-cost multistatic systems with fine range-resolution, and low peak power and sampling rate requirements. Furthermore, the approach avoids problems with direct signal interference. OTAD is shown to be a compelling solution for low-cost multistatic radar systems through the experimental measurements using a newly developed OTAD radar system.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2015.2466477