Loading…
Self-organized low density SiGe quantum dot molecules
Strain feld distribution at the surface of SiGe nanomounds formed by heteroepitaxy is exploited to obtain a positional ordering of the closely spaced Ge quantum dots (quantum dot molecules). We demonstrated, that a low density of the lateral quantum dot molecules (up to 10 7 cm -2 ) can be achieved...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Strain feld distribution at the surface of SiGe nanomounds formed by heteroepitaxy is exploited to obtain a positional ordering of the closely spaced Ge quantum dots (quantum dot molecules). We demonstrated, that a low density of the lateral quantum dot molecules (up to 10 7 cm -2 ) can be achieved by tuning of the growth conditions. We present a growth model that provide physical insights into possible mechanisms underlying the formation of lateral SiGe quantum dot molecules. The electronic band structure of the molecules was calculated by 6-band kp method. The results of theoretical study are in a good agreement with experimental measurements of photoluminescence spectra from the samples with quantum dot molecules. |
---|---|
ISSN: | 1815-3712 |
DOI: | 10.1109/EDM.2015.7184483 |