Loading…
Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision
The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and h...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 103 |
container_issue | |
container_start_page | 96 |
container_title | |
container_volume | |
creator | Volkova, Anastasia Hilaire, Thibault Lauter, Christoph |
description | The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples. |
doi_str_mv | 10.1109/ARITH.2015.14 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7203802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7203802</ieee_id><sourcerecordid>7203802</sourcerecordid><originalsourceid>FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043</originalsourceid><addsrcrecordid>eNotjEFPwjAYhmuiiYAePXnpH9j8vnbt2iMhCCQzEoLxSLrtW6hORtZi9N_DoqfnObzPy9gDQooI9mm6WW2XqQBUKWZXbIxZbq3RWuI1GyFomWhj7C0bh_ABgNbqfMSKDbXelS3x-bdrTy767sC7hsc98feuDzGZuUB8Te6TL5w_8BcXe__DBzu10R8v5bqnyodLeMduGtcGuv_nhL09z7ezZVK8LlazaZHshcGYZISAUNd1IyqlHQm0upJWWVuWpWkMVrUiVWrXaIvDBCSQsa5SAyCTE_b49-uJaHfs_Zfrf3e5AGlAyDMeXUvN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><source>IEEE Xplore All Conference Series</source><creator>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</creator><creatorcontrib>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</creatorcontrib><description>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</description><identifier>ISSN: 1063-6889</identifier><identifier>EISBN: 1479986631</identifier><identifier>EISBN: 147998664X</identifier><identifier>EISBN: 9781479986637</identifier><identifier>EISBN: 9781479986644</identifier><identifier>DOI: 10.1109/ARITH.2015.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Approximation methods ; Error analysis ; Linear systems ; LTI filters ; multiple precision ; Reliability ; reliable floating-point arithmetic ; Signal processing algorithms ; truncation error</subject><ispartof>2015 IEEE 22nd Symposium on Computer Arithmetic, 2015, p.96-103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7203802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7203802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Volkova, Anastasia</creatorcontrib><creatorcontrib>Hilaire, Thibault</creatorcontrib><creatorcontrib>Lauter, Christoph</creatorcontrib><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><title>2015 IEEE 22nd Symposium on Computer Arithmetic</title><addtitle>ARITH</addtitle><description>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Error analysis</subject><subject>Linear systems</subject><subject>LTI filters</subject><subject>multiple precision</subject><subject>Reliability</subject><subject>reliable floating-point arithmetic</subject><subject>Signal processing algorithms</subject><subject>truncation error</subject><issn>1063-6889</issn><isbn>1479986631</isbn><isbn>147998664X</isbn><isbn>9781479986637</isbn><isbn>9781479986644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFPwjAYhmuiiYAePXnpH9j8vnbt2iMhCCQzEoLxSLrtW6hORtZi9N_DoqfnObzPy9gDQooI9mm6WW2XqQBUKWZXbIxZbq3RWuI1GyFomWhj7C0bh_ABgNbqfMSKDbXelS3x-bdrTy767sC7hsc98feuDzGZuUB8Te6TL5w_8BcXe__DBzu10R8v5bqnyodLeMduGtcGuv_nhL09z7ezZVK8LlazaZHshcGYZISAUNd1IyqlHQm0upJWWVuWpWkMVrUiVWrXaIvDBCSQsa5SAyCTE_b49-uJaHfs_Zfrf3e5AGlAyDMeXUvN</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Volkova, Anastasia</creator><creator>Hilaire, Thibault</creator><creator>Lauter, Christoph</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150601</creationdate><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><author>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Error analysis</topic><topic>Linear systems</topic><topic>LTI filters</topic><topic>multiple precision</topic><topic>Reliability</topic><topic>reliable floating-point arithmetic</topic><topic>Signal processing algorithms</topic><topic>truncation error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkova, Anastasia</creatorcontrib><creatorcontrib>Hilaire, Thibault</creatorcontrib><creatorcontrib>Lauter, Christoph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Volkova, Anastasia</au><au>Hilaire, Thibault</au><au>Lauter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</atitle><btitle>2015 IEEE 22nd Symposium on Computer Arithmetic</btitle><stitle>ARITH</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>96</spage><epage>103</epage><pages>96-103</pages><issn>1063-6889</issn><eisbn>1479986631</eisbn><eisbn>147998664X</eisbn><eisbn>9781479986637</eisbn><eisbn>9781479986644</eisbn><coden>IEEPAD</coden><abstract>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/ARITH.2015.14</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6889 |
ispartof | 2015 IEEE 22nd Symposium on Computer Arithmetic, 2015, p.96-103 |
issn | 1063-6889 |
language | eng |
recordid | cdi_ieee_primary_7203802 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Approximation algorithms Approximation methods Error analysis Linear systems LTI filters multiple precision Reliability reliable floating-point arithmetic Signal processing algorithms truncation error |
title | Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reliable%20Evaluation%20of%20the%20Worst-Case%20Peak%20Gain%20Matrix%20in%20Multiple%20Precision&rft.btitle=2015%20IEEE%2022nd%20Symposium%20on%20Computer%20Arithmetic&rft.au=Volkova,%20Anastasia&rft.date=2015-06-01&rft.spage=96&rft.epage=103&rft.pages=96-103&rft.issn=1063-6889&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ARITH.2015.14&rft.eisbn=1479986631&rft.eisbn_list=147998664X&rft.eisbn_list=9781479986637&rft.eisbn_list=9781479986644&rft_dat=%3Cieee_CHZPO%3E7203802%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7203802&rfr_iscdi=true |