Loading…

Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision

The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and h...

Full description

Saved in:
Bibliographic Details
Main Authors: Volkova, Anastasia, Hilaire, Thibault, Lauter, Christoph
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 103
container_issue
container_start_page 96
container_title
container_volume
creator Volkova, Anastasia
Hilaire, Thibault
Lauter, Christoph
description The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.
doi_str_mv 10.1109/ARITH.2015.14
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_7203802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7203802</ieee_id><sourcerecordid>7203802</sourcerecordid><originalsourceid>FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043</originalsourceid><addsrcrecordid>eNotjEFPwjAYhmuiiYAePXnpH9j8vnbt2iMhCCQzEoLxSLrtW6hORtZi9N_DoqfnObzPy9gDQooI9mm6WW2XqQBUKWZXbIxZbq3RWuI1GyFomWhj7C0bh_ABgNbqfMSKDbXelS3x-bdrTy767sC7hsc98feuDzGZuUB8Te6TL5w_8BcXe__DBzu10R8v5bqnyodLeMduGtcGuv_nhL09z7ezZVK8LlazaZHshcGYZISAUNd1IyqlHQm0upJWWVuWpWkMVrUiVWrXaIvDBCSQsa5SAyCTE_b49-uJaHfs_Zfrf3e5AGlAyDMeXUvN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><source>IEEE Xplore All Conference Series</source><creator>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</creator><creatorcontrib>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</creatorcontrib><description>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</description><identifier>ISSN: 1063-6889</identifier><identifier>EISBN: 1479986631</identifier><identifier>EISBN: 147998664X</identifier><identifier>EISBN: 9781479986637</identifier><identifier>EISBN: 9781479986644</identifier><identifier>DOI: 10.1109/ARITH.2015.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Approximation methods ; Error analysis ; Linear systems ; LTI filters ; multiple precision ; Reliability ; reliable floating-point arithmetic ; Signal processing algorithms ; truncation error</subject><ispartof>2015 IEEE 22nd Symposium on Computer Arithmetic, 2015, p.96-103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7203802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7203802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Volkova, Anastasia</creatorcontrib><creatorcontrib>Hilaire, Thibault</creatorcontrib><creatorcontrib>Lauter, Christoph</creatorcontrib><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><title>2015 IEEE 22nd Symposium on Computer Arithmetic</title><addtitle>ARITH</addtitle><description>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Error analysis</subject><subject>Linear systems</subject><subject>LTI filters</subject><subject>multiple precision</subject><subject>Reliability</subject><subject>reliable floating-point arithmetic</subject><subject>Signal processing algorithms</subject><subject>truncation error</subject><issn>1063-6889</issn><isbn>1479986631</isbn><isbn>147998664X</isbn><isbn>9781479986637</isbn><isbn>9781479986644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFPwjAYhmuiiYAePXnpH9j8vnbt2iMhCCQzEoLxSLrtW6hORtZi9N_DoqfnObzPy9gDQooI9mm6WW2XqQBUKWZXbIxZbq3RWuI1GyFomWhj7C0bh_ABgNbqfMSKDbXelS3x-bdrTy767sC7hsc98feuDzGZuUB8Te6TL5w_8BcXe__DBzu10R8v5bqnyodLeMduGtcGuv_nhL09z7ezZVK8LlazaZHshcGYZISAUNd1IyqlHQm0upJWWVuWpWkMVrUiVWrXaIvDBCSQsa5SAyCTE_b49-uJaHfs_Zfrf3e5AGlAyDMeXUvN</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Volkova, Anastasia</creator><creator>Hilaire, Thibault</creator><creator>Lauter, Christoph</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20150601</creationdate><title>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</title><author>Volkova, Anastasia ; Hilaire, Thibault ; Lauter, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Error analysis</topic><topic>Linear systems</topic><topic>LTI filters</topic><topic>multiple precision</topic><topic>Reliability</topic><topic>reliable floating-point arithmetic</topic><topic>Signal processing algorithms</topic><topic>truncation error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkova, Anastasia</creatorcontrib><creatorcontrib>Hilaire, Thibault</creatorcontrib><creatorcontrib>Lauter, Christoph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Volkova, Anastasia</au><au>Hilaire, Thibault</au><au>Lauter, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision</atitle><btitle>2015 IEEE 22nd Symposium on Computer Arithmetic</btitle><stitle>ARITH</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>96</spage><epage>103</epage><pages>96-103</pages><issn>1063-6889</issn><eisbn>1479986631</eisbn><eisbn>147998664X</eisbn><eisbn>9781479986637</eisbn><eisbn>9781479986644</eisbn><coden>IEEPAD</coden><abstract>The worst-case peak gain (WCPG) of a linear filter is an important measure for the implementation of signal processing algorithms. It is used in the error propagation analysis for filters, thus a reliable evaluation with controlled precision is required. The WCPG is computed as an infinite sum and has matrix powers in each summand. We propose a direct formula for the lower bound on truncation order of the infinite sum in dependency of desired truncation error. Several multiprecision methods for complex matrix operations are developed and their error analysis performed. A multiprecision matrix powering method is presented. All methods yield a rigorous solution with an absolute error bounded by an a priori given value. The results are illustrated with numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/ARITH.2015.14</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6889
ispartof 2015 IEEE 22nd Symposium on Computer Arithmetic, 2015, p.96-103
issn 1063-6889
language eng
recordid cdi_ieee_primary_7203802
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Approximation algorithms
Approximation methods
Error analysis
Linear systems
LTI filters
multiple precision
Reliability
reliable floating-point arithmetic
Signal processing algorithms
truncation error
title Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reliable%20Evaluation%20of%20the%20Worst-Case%20Peak%20Gain%20Matrix%20in%20Multiple%20Precision&rft.btitle=2015%20IEEE%2022nd%20Symposium%20on%20Computer%20Arithmetic&rft.au=Volkova,%20Anastasia&rft.date=2015-06-01&rft.spage=96&rft.epage=103&rft.pages=96-103&rft.issn=1063-6889&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ARITH.2015.14&rft.eisbn=1479986631&rft.eisbn_list=147998664X&rft.eisbn_list=9781479986637&rft.eisbn_list=9781479986644&rft_dat=%3Cieee_CHZPO%3E7203802%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h281t-4e1010dddf2c56ae2196c39599bbb8f81cd5e5b6af6912c56030e89ac50e89043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7203802&rfr_iscdi=true