Loading…
A Workflow Model for Adaptive Analytics on Big Data
The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business an...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business analysts, engineers, end-users etc. Therefore Big Data analytics should be expressed and executed in a manner that is adaptive to the user and the system. We discuss the principles of adaptive analytics and we summarise ongoing work on the creation of a workflow model and, furthermore, a workflow management system that enables the creation and the execution of adaptive analytics. The model focuses on the separation of task dependencies from task functionality and the decoupling of application logic from implementation. Our motivation and applications derive from real use cases of the telecommunication domain. |
---|---|
ISSN: | 2379-7703 |
DOI: | 10.1109/BigDataCongress.2015.106 |