Loading…

A Workflow Model for Adaptive Analytics on Big Data

The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business an...

Full description

Saved in:
Bibliographic Details
Main Authors: Kantere, Verena, Filatov, Maxim
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 676
container_issue
container_start_page 673
container_title
container_volume
creator Kantere, Verena
Filatov, Maxim
description The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business analysts, engineers, end-users etc. Therefore Big Data analytics should be expressed and executed in a manner that is adaptive to the user and the system. We discuss the principles of adaptive analytics and we summarise ongoing work on the creation of a workflow model and, furthermore, a workflow management system that enables the creation and the execution of adaptive analytics. The model focuses on the separation of task dependencies from task functionality and the decoupling of application logic from implementation. Our motivation and applications derive from real use cases of the telecommunication domain.
doi_str_mv 10.1109/BigDataCongress.2015.106
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_7207290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7207290</ieee_id><sourcerecordid>7207290</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-abfa0e1a7dbd5849b6c66258f4b7c0990cde2101121de55a8176398c09216d3c3</originalsourceid><addsrcrecordid>eNotzsFOwzAQBFAjgUQp_QIu_oGEXTv2xscQoCAV9VLEsXJipzKEuIojUP-eIDjNYaR5wxhHyBHB3N6Fw72dbB2Hw-hTygWgyhH0GbvCQpMkQSTP2UJIMhkRyEu2SukdAJC01kIvmKz4Wxw_uj5-85fofM-7OPLK2eMUvjyvBtufptAmHgc-c_zXu2YXne2TX_3nkr0-Puzqp2yzXT_X1SYLAsops01nwaMl1zhVFqbR7WyqsisaasEYaJ0XCIgCnVfKlvMpacq5EqidbOWS3fztBu_9_jiGTzue9iSAhAH5A6jvRxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Workflow Model for Adaptive Analytics on Big Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kantere, Verena ; Filatov, Maxim</creator><creatorcontrib>Kantere, Verena ; Filatov, Maxim</creatorcontrib><description>The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business analysts, engineers, end-users etc. Therefore Big Data analytics should be expressed and executed in a manner that is adaptive to the user and the system. We discuss the principles of adaptive analytics and we summarise ongoing work on the creation of a workflow model and, furthermore, a workflow management system that enables the creation and the execution of adaptive analytics. The model focuses on the separation of task dependencies from task functionality and the decoupling of application logic from implementation. Our motivation and applications derive from real use cases of the telecommunication domain.</description><identifier>ISSN: 2379-7703</identifier><identifier>EISBN: 1467372773</identifier><identifier>EISBN: 9781467372787</identifier><identifier>EISBN: 1467372781</identifier><identifier>EISBN: 9781467372770</identifier><identifier>DOI: 10.1109/BigDataCongress.2015.106</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive analytics ; Adaptive systems ; Analytical models ; Big data ; big data analytics ; Data models ; Engines ; online analytics ; Optimization</subject><ispartof>2015 IEEE International Congress on Big Data, 2015, p.673-676</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7207290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7207290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kantere, Verena</creatorcontrib><creatorcontrib>Filatov, Maxim</creatorcontrib><title>A Workflow Model for Adaptive Analytics on Big Data</title><title>2015 IEEE International Congress on Big Data</title><addtitle>bigdatacongress</addtitle><description>The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business analysts, engineers, end-users etc. Therefore Big Data analytics should be expressed and executed in a manner that is adaptive to the user and the system. We discuss the principles of adaptive analytics and we summarise ongoing work on the creation of a workflow model and, furthermore, a workflow management system that enables the creation and the execution of adaptive analytics. The model focuses on the separation of task dependencies from task functionality and the decoupling of application logic from implementation. Our motivation and applications derive from real use cases of the telecommunication domain.</description><subject>Adaptation models</subject><subject>adaptive analytics</subject><subject>Adaptive systems</subject><subject>Analytical models</subject><subject>Big data</subject><subject>big data analytics</subject><subject>Data models</subject><subject>Engines</subject><subject>online analytics</subject><subject>Optimization</subject><issn>2379-7703</issn><isbn>1467372773</isbn><isbn>9781467372787</isbn><isbn>1467372781</isbn><isbn>9781467372770</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzsFOwzAQBFAjgUQp_QIu_oGEXTv2xscQoCAV9VLEsXJipzKEuIojUP-eIDjNYaR5wxhHyBHB3N6Fw72dbB2Hw-hTygWgyhH0GbvCQpMkQSTP2UJIMhkRyEu2SukdAJC01kIvmKz4Wxw_uj5-85fofM-7OPLK2eMUvjyvBtufptAmHgc-c_zXu2YXne2TX_3nkr0-Puzqp2yzXT_X1SYLAsops01nwaMl1zhVFqbR7WyqsisaasEYaJ0XCIgCnVfKlvMpacq5EqidbOWS3fztBu_9_jiGTzue9iSAhAH5A6jvRxQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Kantere, Verena</creator><creator>Filatov, Maxim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150601</creationdate><title>A Workflow Model for Adaptive Analytics on Big Data</title><author>Kantere, Verena ; Filatov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-abfa0e1a7dbd5849b6c66258f4b7c0990cde2101121de55a8176398c09216d3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation models</topic><topic>adaptive analytics</topic><topic>Adaptive systems</topic><topic>Analytical models</topic><topic>Big data</topic><topic>big data analytics</topic><topic>Data models</topic><topic>Engines</topic><topic>online analytics</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kantere, Verena</creatorcontrib><creatorcontrib>Filatov, Maxim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kantere, Verena</au><au>Filatov, Maxim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Workflow Model for Adaptive Analytics on Big Data</atitle><btitle>2015 IEEE International Congress on Big Data</btitle><stitle>bigdatacongress</stitle><date>2015-06-01</date><risdate>2015</risdate><spage>673</spage><epage>676</epage><pages>673-676</pages><issn>2379-7703</issn><eisbn>1467372773</eisbn><eisbn>9781467372787</eisbn><eisbn>1467372781</eisbn><eisbn>9781467372770</eisbn><coden>IEEPAD</coden><abstract>The analysis of Big Data needs to be performed on a range of data stores, both traditional and modern, on data sources that are heterogeneous in their schemas and formats, and on a diversity of query engines. The users that need to perform such data analysis may have several roles, like, business analysts, engineers, end-users etc. Therefore Big Data analytics should be expressed and executed in a manner that is adaptive to the user and the system. We discuss the principles of adaptive analytics and we summarise ongoing work on the creation of a workflow model and, furthermore, a workflow management system that enables the creation and the execution of adaptive analytics. The model focuses on the separation of task dependencies from task functionality and the decoupling of application logic from implementation. Our motivation and applications derive from real use cases of the telecommunication domain.</abstract><pub>IEEE</pub><doi>10.1109/BigDataCongress.2015.106</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-7703
ispartof 2015 IEEE International Congress on Big Data, 2015, p.673-676
issn 2379-7703
language eng
recordid cdi_ieee_primary_7207290
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
adaptive analytics
Adaptive systems
Analytical models
Big data
big data analytics
Data models
Engines
online analytics
Optimization
title A Workflow Model for Adaptive Analytics on Big Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Workflow%20Model%20for%20Adaptive%20Analytics%20on%20Big%20Data&rft.btitle=2015%20IEEE%20International%20Congress%20on%20Big%20Data&rft.au=Kantere,%20Verena&rft.date=2015-06-01&rft.spage=673&rft.epage=676&rft.pages=673-676&rft.issn=2379-7703&rft.coden=IEEPAD&rft_id=info:doi/10.1109/BigDataCongress.2015.106&rft.eisbn=1467372773&rft.eisbn_list=9781467372787&rft.eisbn_list=1467372781&rft.eisbn_list=9781467372770&rft_dat=%3Cieee_6IE%3E7207290%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-abfa0e1a7dbd5849b6c66258f4b7c0990cde2101121de55a8176398c09216d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7207290&rfr_iscdi=true