Loading…

Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application

In this paper, we present our effort towards comprehensive traffic forecasting for big data applications using external, light-weighted file system monitoring. Our idea is motivated by the key observations that rich traffic demand information already exists in the log and meta-data files of many big...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2016-08, Vol.24 (4), p.2210-2222
Main Authors: Peng, Yang, Chen, Kai, Wang, Guohui, Bai, Wei, Zhao, Yangming, Wang, Hao, Geng, Yanhui, Ma, Zhiqiang, Gu, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243
cites cdi_FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243
container_end_page 2222
container_issue 4
container_start_page 2210
container_title IEEE/ACM transactions on networking
container_volume 24
creator Peng, Yang
Chen, Kai
Wang, Guohui
Bai, Wei
Zhao, Yangming
Wang, Hao
Geng, Yanhui
Ma, Zhiqiang
Gu, Lin
description In this paper, we present our effort towards comprehensive traffic forecasting for big data applications using external, light-weighted file system monitoring. Our idea is motivated by the key observations that rich traffic demand information already exists in the log and meta-data files of many big data applications, and that such information can be readily extracted through run-time file system monitoring. As the first step, we use Hadoop as a concrete example to explore our methodology and develop a system called HadoopWatch to predict traffic demands of Hadoop applications. We further implement HadoopWatch in a small-scale testbed with 10 physical servers and 30 virtual machines. Our experiments over a series of MapReduce applications demonstrate that HadoopWatch can forecast the traffic demand with almost 100% accuracy and time advance. Furthermore, it makes no modification on the Hadoop framework, and introduces little overhead to the application performance. Finally, to showcase the utility of accurate traffic prediction made by HadoopWatch, we design and implement a simple HadoopWatch-enabled network optimization module into the HadoopWatch controller, and with realistic Hadoop job benchmarks we find that even a simple algorithm can leverage the forecasting results provided by HadoopWatch to significantly improve the Hadoop job completion time by up to 14.72%.
doi_str_mv 10.1109/TNET.2015.2458892
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7208904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7208904</ieee_id><sourcerecordid>4152382231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_JepPaqlD0Es_LdjOpW9Js3E0U_72JLR48zTA87_DyJMklwTNCsLotXhbFjGIiZpSLPFf0KJkQIfKUCimPhx1Llkqp6GlyFuMWY8IwlZOkKPyXCWVEc79rA7xDE90noCKYqnIWLX0Aa2Lnmg1yDZrXvi9_0X483aEHiG7TINOU6L5ta2dN53xznpxUpo5wcZjT5G25KOZP6er18Xl-v0oto7JLQZISqMixEqCAl5YrQlWWKV6VFoDLSiiTYVEaEJARwQCArfFa2szwnHI2TW72f9vgP3qInd65aKGuTQO-j5rkTEiCc5oN6PU_dOv70AztBopQIZhQYqDInrLBxxig0m1wOxO-NcF69KxHz3r0rA-eh8zVPuOGen98RnGuMGc_Eop5Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812553595</pqid></control><display><type>article</type><title>Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Peng, Yang ; Chen, Kai ; Wang, Guohui ; Bai, Wei ; Zhao, Yangming ; Wang, Hao ; Geng, Yanhui ; Ma, Zhiqiang ; Gu, Lin</creator><creatorcontrib>Peng, Yang ; Chen, Kai ; Wang, Guohui ; Bai, Wei ; Zhao, Yangming ; Wang, Hao ; Geng, Yanhui ; Ma, Zhiqiang ; Gu, Lin</creatorcontrib><description>In this paper, we present our effort towards comprehensive traffic forecasting for big data applications using external, light-weighted file system monitoring. Our idea is motivated by the key observations that rich traffic demand information already exists in the log and meta-data files of many big data applications, and that such information can be readily extracted through run-time file system monitoring. As the first step, we use Hadoop as a concrete example to explore our methodology and develop a system called HadoopWatch to predict traffic demands of Hadoop applications. We further implement HadoopWatch in a small-scale testbed with 10 physical servers and 30 virtual machines. Our experiments over a series of MapReduce applications demonstrate that HadoopWatch can forecast the traffic demand with almost 100% accuracy and time advance. Furthermore, it makes no modification on the Hadoop framework, and introduces little overhead to the application performance. Finally, to showcase the utility of accurate traffic prediction made by HadoopWatch, we design and implement a simple HadoopWatch-enabled network optimization module into the HadoopWatch controller, and with realistic Hadoop job benchmarks we find that even a simple algorithm can leverage the forecasting results provided by HadoopWatch to significantly improve the Hadoop job completion time by up to 14.72%.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2015.2458892</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Cloud computing ; Computer architecture ; Concrete ; data center networks ; Data management ; Demand ; Design engineering ; Forecasting ; Hadoop ; IEEE transactions ; Monitoring ; Run time (computers) ; Technological planning ; Traffic engineering ; Traffic flow ; traffic prediction ; Writing</subject><ispartof>IEEE/ACM transactions on networking, 2016-08, Vol.24 (4), p.2210-2222</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243</citedby><cites>FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7208904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Peng, Yang</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Geng, Yanhui</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><title>Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>In this paper, we present our effort towards comprehensive traffic forecasting for big data applications using external, light-weighted file system monitoring. Our idea is motivated by the key observations that rich traffic demand information already exists in the log and meta-data files of many big data applications, and that such information can be readily extracted through run-time file system monitoring. As the first step, we use Hadoop as a concrete example to explore our methodology and develop a system called HadoopWatch to predict traffic demands of Hadoop applications. We further implement HadoopWatch in a small-scale testbed with 10 physical servers and 30 virtual machines. Our experiments over a series of MapReduce applications demonstrate that HadoopWatch can forecast the traffic demand with almost 100% accuracy and time advance. Furthermore, it makes no modification on the Hadoop framework, and introduces little overhead to the application performance. Finally, to showcase the utility of accurate traffic prediction made by HadoopWatch, we design and implement a simple HadoopWatch-enabled network optimization module into the HadoopWatch controller, and with realistic Hadoop job benchmarks we find that even a simple algorithm can leverage the forecasting results provided by HadoopWatch to significantly improve the Hadoop job completion time by up to 14.72%.</description><subject>Big Data</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Concrete</subject><subject>data center networks</subject><subject>Data management</subject><subject>Demand</subject><subject>Design engineering</subject><subject>Forecasting</subject><subject>Hadoop</subject><subject>IEEE transactions</subject><subject>Monitoring</subject><subject>Run time (computers)</subject><subject>Technological planning</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>traffic prediction</subject><subject>Writing</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_JepPaqlD0Es_LdjOpW9Js3E0U_72JLR48zTA87_DyJMklwTNCsLotXhbFjGIiZpSLPFf0KJkQIfKUCimPhx1Llkqp6GlyFuMWY8IwlZOkKPyXCWVEc79rA7xDE90noCKYqnIWLX0Aa2Lnmg1yDZrXvi9_0X483aEHiG7TINOU6L5ta2dN53xznpxUpo5wcZjT5G25KOZP6er18Xl-v0oto7JLQZISqMixEqCAl5YrQlWWKV6VFoDLSiiTYVEaEJARwQCArfFa2szwnHI2TW72f9vgP3qInd65aKGuTQO-j5rkTEiCc5oN6PU_dOv70AztBopQIZhQYqDInrLBxxig0m1wOxO-NcF69KxHz3r0rA-eh8zVPuOGen98RnGuMGc_Eop5Dg</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Peng, Yang</creator><creator>Chen, Kai</creator><creator>Wang, Guohui</creator><creator>Bai, Wei</creator><creator>Zhao, Yangming</creator><creator>Wang, Hao</creator><creator>Geng, Yanhui</creator><creator>Ma, Zhiqiang</creator><creator>Gu, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application</title><author>Peng, Yang ; Chen, Kai ; Wang, Guohui ; Bai, Wei ; Zhao, Yangming ; Wang, Hao ; Geng, Yanhui ; Ma, Zhiqiang ; Gu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Concrete</topic><topic>data center networks</topic><topic>Data management</topic><topic>Demand</topic><topic>Design engineering</topic><topic>Forecasting</topic><topic>Hadoop</topic><topic>IEEE transactions</topic><topic>Monitoring</topic><topic>Run time (computers)</topic><topic>Technological planning</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>traffic prediction</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yang</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Zhao, Yangming</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Geng, Yanhui</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yang</au><au>Chen, Kai</au><au>Wang, Guohui</au><au>Bai, Wei</au><au>Zhao, Yangming</au><au>Wang, Hao</au><au>Geng, Yanhui</au><au>Ma, Zhiqiang</au><au>Gu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2016-08</date><risdate>2016</risdate><volume>24</volume><issue>4</issue><spage>2210</spage><epage>2222</epage><pages>2210-2222</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>In this paper, we present our effort towards comprehensive traffic forecasting for big data applications using external, light-weighted file system monitoring. Our idea is motivated by the key observations that rich traffic demand information already exists in the log and meta-data files of many big data applications, and that such information can be readily extracted through run-time file system monitoring. As the first step, we use Hadoop as a concrete example to explore our methodology and develop a system called HadoopWatch to predict traffic demands of Hadoop applications. We further implement HadoopWatch in a small-scale testbed with 10 physical servers and 30 virtual machines. Our experiments over a series of MapReduce applications demonstrate that HadoopWatch can forecast the traffic demand with almost 100% accuracy and time advance. Furthermore, it makes no modification on the Hadoop framework, and introduces little overhead to the application performance. Finally, to showcase the utility of accurate traffic prediction made by HadoopWatch, we design and implement a simple HadoopWatch-enabled network optimization module into the HadoopWatch controller, and with realistic Hadoop job benchmarks we find that even a simple algorithm can leverage the forecasting results provided by HadoopWatch to significantly improve the Hadoop job completion time by up to 14.72%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2015.2458892</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2016-08, Vol.24 (4), p.2210-2222
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_7208904
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service)
subjects Big Data
Cloud computing
Computer architecture
Concrete
data center networks
Data management
Demand
Design engineering
Forecasting
Hadoop
IEEE transactions
Monitoring
Run time (computers)
Technological planning
Traffic engineering
Traffic flow
traffic prediction
Writing
title Towards Comprehensive Traffic Forecasting in Cloud Computing: Design and Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Comprehensive%20Traffic%20Forecasting%20in%20Cloud%20Computing:%20Design%20and%20Application&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Peng,%20Yang&rft.date=2016-08&rft.volume=24&rft.issue=4&rft.spage=2210&rft.epage=2222&rft.pages=2210-2222&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2015.2458892&rft_dat=%3Cproquest_ieee_%3E4152382231%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-e61de258095e9e4dc491297794fdcee46f59a705dae5e7153eee3b0b6c7a48243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812553595&rft_id=info:pmid/&rft_ieee_id=7208904&rfr_iscdi=true