Loading…
The study of convergence of parabolic sweeps method in domains of nonrectangular shape
The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 194 |
container_issue | |
container_start_page | 187 |
container_title | |
container_volume | |
creator | Gadiyak, G.V. Ginkin, V.P. Zhiganova, I.G. |
description | The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters. |
doi_str_mv | 10.1109/NASCOD.1987.721178 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_721178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>721178</ieee_id><sourcerecordid>721178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0DbND2SlH7ArybZkLYP7CoRmUdNt0OM6VrElIzkt-fsmpKthYDicQWhFSU4pkU8f689m95xTWYtcMEpFfYMeiCRc1IVg5A4tU_omhFDBS1rJe_TV9oDTfLQnHDpsgv-BeABv4FInFZUOgzM4_QJMCY8w98Fi57ENo3I-XVY--AhmVv5wHFTEqVcTPKLbTg0Jlv-5QO3rS9u8Z9vd26ZZbzNXizmjJSgmmVEAldaaCWkqdnbnisuKgOXaMl4WVBlma8n52VsSK4XRHCramWKBVlesA4D9FN2o4ml_PV78AZQ_UBM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</creator><creatorcontrib>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</creatorcontrib><description>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</description><identifier>ISBN: 0906783720</identifier><identifier>ISBN: 9780906783726</identifier><identifier>DOI: 10.1109/NASCOD.1987.721178</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Arithmetic ; Convergence ; Difference equations ; Geometry ; Iterative methods</subject><ispartof>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, 1987, p.187-194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/721178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/721178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gadiyak, G.V.</creatorcontrib><creatorcontrib>Ginkin, V.P.</creatorcontrib><creatorcontrib>Zhiganova, I.G.</creatorcontrib><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><title>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits</title><addtitle>NASCOD</addtitle><description>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</description><subject>Acceleration</subject><subject>Arithmetic</subject><subject>Convergence</subject><subject>Difference equations</subject><subject>Geometry</subject><subject>Iterative methods</subject><isbn>0906783720</isbn><isbn>9780906783726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1987</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAURAWl0DbND2SlH7ArybZkLYP7CoRmUdNt0OM6VrElIzkt-fsmpKthYDicQWhFSU4pkU8f689m95xTWYtcMEpFfYMeiCRc1IVg5A4tU_omhFDBS1rJe_TV9oDTfLQnHDpsgv-BeABv4FInFZUOgzM4_QJMCY8w98Fi57ENo3I-XVY--AhmVv5wHFTEqVcTPKLbTg0Jlv-5QO3rS9u8Z9vd26ZZbzNXizmjJSgmmVEAldaaCWkqdnbnisuKgOXaMl4WVBlma8n52VsSK4XRHCramWKBVlesA4D9FN2o4ml_PV78AZQ_UBM</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Gadiyak, G.V.</creator><creator>Ginkin, V.P.</creator><creator>Zhiganova, I.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1987</creationdate><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><author>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Acceleration</topic><topic>Arithmetic</topic><topic>Convergence</topic><topic>Difference equations</topic><topic>Geometry</topic><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Gadiyak, G.V.</creatorcontrib><creatorcontrib>Ginkin, V.P.</creatorcontrib><creatorcontrib>Zhiganova, I.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gadiyak, G.V.</au><au>Ginkin, V.P.</au><au>Zhiganova, I.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</atitle><btitle>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits</btitle><stitle>NASCOD</stitle><date>1987</date><risdate>1987</risdate><spage>187</spage><epage>194</epage><pages>187-194</pages><isbn>0906783720</isbn><isbn>9780906783726</isbn><abstract>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</abstract><pub>IEEE</pub><doi>10.1109/NASCOD.1987.721178</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0906783720 |
ispartof | [1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, 1987, p.187-194 |
issn | |
language | eng |
recordid | cdi_ieee_primary_721178 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Arithmetic Convergence Difference equations Geometry Iterative methods |
title | The study of convergence of parabolic sweeps method in domains of nonrectangular shape |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20study%20of%20convergence%20of%20parabolic%20sweeps%20method%20in%20domains%20of%20nonrectangular%20shape&rft.btitle=%5B1987%5D%20NASECODE%20V:%20Proceedings%20of%20the%20Fifth%20International%20Conference%20on%20the%20Numerical%20Analysis%20of%20Semiconductor%20Devices%20and%20Integrated%20Circuits&rft.au=Gadiyak,%20G.V.&rft.date=1987&rft.spage=187&rft.epage=194&rft.pages=187-194&rft.isbn=0906783720&rft.isbn_list=9780906783726&rft_id=info:doi/10.1109/NASCOD.1987.721178&rft_dat=%3Cieee_6IE%3E721178%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=721178&rfr_iscdi=true |