Loading…

The study of convergence of parabolic sweeps method in domains of nonrectangular shape

The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of...

Full description

Saved in:
Bibliographic Details
Main Authors: Gadiyak, G.V., Ginkin, V.P., Zhiganova, I.G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 194
container_issue
container_start_page 187
container_title
container_volume
creator Gadiyak, G.V.
Ginkin, V.P.
Zhiganova, I.G.
description The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.
doi_str_mv 10.1109/NASCOD.1987.721178
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_721178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>721178</ieee_id><sourcerecordid>721178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0DbND2SlH7ArybZkLYP7CoRmUdNt0OM6VrElIzkt-fsmpKthYDicQWhFSU4pkU8f689m95xTWYtcMEpFfYMeiCRc1IVg5A4tU_omhFDBS1rJe_TV9oDTfLQnHDpsgv-BeABv4FInFZUOgzM4_QJMCY8w98Fi57ENo3I-XVY--AhmVv5wHFTEqVcTPKLbTg0Jlv-5QO3rS9u8Z9vd26ZZbzNXizmjJSgmmVEAldaaCWkqdnbnisuKgOXaMl4WVBlma8n52VsSK4XRHCramWKBVlesA4D9FN2o4ml_PV78AZQ_UBM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</creator><creatorcontrib>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</creatorcontrib><description>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</description><identifier>ISBN: 0906783720</identifier><identifier>ISBN: 9780906783726</identifier><identifier>DOI: 10.1109/NASCOD.1987.721178</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Arithmetic ; Convergence ; Difference equations ; Geometry ; Iterative methods</subject><ispartof>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, 1987, p.187-194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/721178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/721178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gadiyak, G.V.</creatorcontrib><creatorcontrib>Ginkin, V.P.</creatorcontrib><creatorcontrib>Zhiganova, I.G.</creatorcontrib><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><title>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits</title><addtitle>NASCOD</addtitle><description>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</description><subject>Acceleration</subject><subject>Arithmetic</subject><subject>Convergence</subject><subject>Difference equations</subject><subject>Geometry</subject><subject>Iterative methods</subject><isbn>0906783720</isbn><isbn>9780906783726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1987</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAURAWl0DbND2SlH7ArybZkLYP7CoRmUdNt0OM6VrElIzkt-fsmpKthYDicQWhFSU4pkU8f689m95xTWYtcMEpFfYMeiCRc1IVg5A4tU_omhFDBS1rJe_TV9oDTfLQnHDpsgv-BeABv4FInFZUOgzM4_QJMCY8w98Fi57ENo3I-XVY--AhmVv5wHFTEqVcTPKLbTg0Jlv-5QO3rS9u8Z9vd26ZZbzNXizmjJSgmmVEAldaaCWkqdnbnisuKgOXaMl4WVBlma8n52VsSK4XRHCramWKBVlesA4D9FN2o4ml_PV78AZQ_UBM</recordid><startdate>1987</startdate><enddate>1987</enddate><creator>Gadiyak, G.V.</creator><creator>Ginkin, V.P.</creator><creator>Zhiganova, I.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1987</creationdate><title>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</title><author>Gadiyak, G.V. ; Ginkin, V.P. ; Zhiganova, I.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Acceleration</topic><topic>Arithmetic</topic><topic>Convergence</topic><topic>Difference equations</topic><topic>Geometry</topic><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Gadiyak, G.V.</creatorcontrib><creatorcontrib>Ginkin, V.P.</creatorcontrib><creatorcontrib>Zhiganova, I.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gadiyak, G.V.</au><au>Ginkin, V.P.</au><au>Zhiganova, I.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The study of convergence of parabolic sweeps method in domains of nonrectangular shape</atitle><btitle>[1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits</btitle><stitle>NASCOD</stitle><date>1987</date><risdate>1987</risdate><spage>187</spage><epage>194</epage><pages>187-194</pages><isbn>0906783720</isbn><isbn>9780906783726</isbn><abstract>The aim of the paper presented herein is the study of the convergence of the mixed HFPS (h-factorization parabolic sweeps) method for solving the problems in nonrectangular domains, hexagonal geometries as well as in the absence of diagonal predominance to find the new regions of the application of this method. For the sake of comparison the same problems were solved by the method of variable directions in the simplest version without the choice of the optimum values of the accelerating parameters.</abstract><pub>IEEE</pub><doi>10.1109/NASCOD.1987.721178</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0906783720
ispartof [1987] NASECODE V: Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, 1987, p.187-194
issn
language eng
recordid cdi_ieee_primary_721178
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Arithmetic
Convergence
Difference equations
Geometry
Iterative methods
title The study of convergence of parabolic sweeps method in domains of nonrectangular shape
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20study%20of%20convergence%20of%20parabolic%20sweeps%20method%20in%20domains%20of%20nonrectangular%20shape&rft.btitle=%5B1987%5D%20NASECODE%20V:%20Proceedings%20of%20the%20Fifth%20International%20Conference%20on%20the%20Numerical%20Analysis%20of%20Semiconductor%20Devices%20and%20Integrated%20Circuits&rft.au=Gadiyak,%20G.V.&rft.date=1987&rft.spage=187&rft.epage=194&rft.pages=187-194&rft.isbn=0906783720&rft.isbn_list=9780906783726&rft_id=info:doi/10.1109/NASCOD.1987.721178&rft_dat=%3Cieee_6IE%3E721178%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-14ea292caee5bbb279c521986a6950ed6bd26431ac2d896600190d97cb6e51fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=721178&rfr_iscdi=true